Advanced power system modeling need not mean more complex modeling

A recent article by E3 and Form Energy in Utility Dive calls for more granular temporal modeling of the electric power system to better capture the constraints of a fully-renewable portfolio and the requirements for supporting technologies such as storage. The authors have identified the correct problem–most current models use a “typical week” of loads that are an average of historic conditions and probabilistic representations of unit availability. This approach fails to capture the “tail” conditions where renewables and currently available storage are likely to be sufficient.

But the answer is not a full blown hour by hour model of the entire year with many permutations of the many possibilities. These system production simulation models already take too long to run a single scenario due to the complexity of this giant “transmission machine.” Adding the required uncertainty will cause these models to run “in real time” as some modelers describe it.

Instead a separate analysis should first identify the conditions under which renewables + current technology storage are unlikely to meet demand sufficiently. These include drought that limits hydropower, extreme weather, and extended weather that limits renewable production. Then these conditions can input into the current models to assess how the system responds.

The two important fixes which has always been problem in these models are to energy-limited resources and unit commitment algorithms. Both of these are complex problems, and these models have not done well in scheduling seasonal hydropower pondage storage and in deciding which units to commit to meet a high demand several days ahead. (And these problems are also why relying solely on hourly bulk power pricing doesn’t give an accurate measure of the true market value of a resource.) But focusing on these two problems is much easier than trying to incorporating the full range of uncertainty for all 8,760 hours for at least a decade into the future.

We should not confuse precision with accuracy. The current models can be quite precise on specific metrics such as unit efficiency as different load points, but they can be inaccurate because they don’t capture the effect of load and fuel price variations. We should not be trying to achieve spurious precision through more complete granular modeling–we should be focusing on accuracy in the narrow situations that matter.

1 thought on “Advanced power system modeling need not mean more complex modeling

  1. kakatoa

    Thanks for highlighting this new paper!

    A new paper on last years black outs was published that you are likely aware of (but just in case it’s noted below)-

    https://www.energy.ca.gov/news/2021-01/caiso-cpuc-cec-issue-final-report-causes-august-2020-rotating-outage

    Our outage last August 14th didn’t seem like it meet the requirements for what a rotating outage was supposed to be limited to. After 135 minutes we had to pull the generator off the porch to keep our food safe.

    Liked by 1 person

    Reply

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s