Tag Archives: EDF

Three key steps in designing rates for solar power

KQED posted a good summary of how solar power is driving the residential rate design rulemaking at the CPUC. (M.Cubed works for EDF there.) I offer three steps that should be taken to address the issues of how to change ratemaking for a changing energy marketplace:

1) Consumers should see time varying prices (time of use or TOU being among that menu). Tiered rates make it impossible to see the current price for consumption, and tiered rates have been shown not to induce any additional conservation across the customer base. Consumer surveys show that customers want more control over their electricity use and the price signals to direct them.

2) Consumers should be offered a meaningful menu of rate options. This means rates that differ in risk exposure both over time of day and time horizon. Customers should be able to hedge against peak day prices or participate in demand response. They should be able to accept changes in hourly prices or buy a multi-year contract. Utilities already offer these contract options to their suppliers; why not treat their customers as they they are valued?

3) Any calculation of grid costs and responsibility should reflect the changing demand by consumers. The grid charges proposed by the utilities assume that future consumers will install the same-sized equipment as they do today and that they will consume in the same pattern. Solar panels are ready today to “island” a home from the network, and EV charging could create greater load diversity even at the circuit level. That will radically change utility investment. The distribution planning rulemaking is an important step toward resolving that issue but the CPUC hasn’t yet linked the proceedings.

Only the first issue is being addressed head on in the rulemaking and it hasn’t really delved into the importance of emerging consumer choice.

Will “optimal location” become the next “least-cost best-fit”?

At the CPUC’s first workshop on distribution planning, the buzz word that came up in almost every presentation was “optimal location.” But what does “optimal location” mean? From who’s perspective? Over what time horizon? Who decides? The parties gave hints of where they stand and they are probably far apart.

Paul De Martini gave an overview of the technical issues that the rulemaking can address, but I discussed earlier, there’s a set of institutional matters that also must be addressed. Public comment came back repeatedly to these questions of:  who should be allowed into the emerging market with what roles, and how will this OIR be integrated with the multitude of other planning proceedings at the CPUC? I’ll leave a discussion of those topics to another blog.

The more salient question is defining “optimal location.” I’m sure that it sounded good to legislators when they passed AB 327, but as with many other undefined terms in the law, the devil is in the details. “Least cost-best fit” for evaluating new generation resources similarly sounds like “mom and apple pie” but has become almost meaningless in application at the CPUC in the LTPP and RPS proceedings. Least cost best fit has just led to frustration for both many developers of innovative or flexible renewables such as solar thermal and geothermal, and for the utilities who want these resources.

SCE and SDG&E were quite clear about how they saw optimal location would be chosen: the utility distribution planners would centrally plan the best locations and tell customers. Exactly HOW they would communicate these choices was vague.

Many asked how project developers and customers might know where to find those optimal locations among the utilities’ data. Jamie Fine of EDF might have had the best analogy. He said he now lives in a house that clearly needs a new paint job, so painters drop flyers on his doorstep and not on his neighbors who’s paint is not peeling. Fine asked, “when will the utilities show us where the paint is peeling in their distribution systems?” His and others’ questions call out for a GIS tool that be publicly viewed, maybe along the view of the ICF tool recently presented.

I can think of a number of issues that will affect choices of optimal locations, many of them outside of what a utility planner might consider. The theme of these choices is that it becomes a decentralized process made up of individual decisions just as we have in the rest of the U.S. market place.

  • Differences in distributed energy resource characteristics, e.g., solar vs. bioenergy;
  • Regional socio-economic characteristics to assess fairness and equity;
  • Amount of stranded investment affected;
  • The activities and energy uses both of the host site, neighboring co-users/generators, and surrounding environs;
  • Differences in valuation of reliability by different customers;
  • Interaction with local government plans such as achieving climate action goals under SB 375.
  • Opportunities for new development compared to retrofitting or replacing existing infrastructure.

In such a complex world, the utilities won’t be able to make a set of locational decisions across their service territory simply because they won’t be able to comprehend this entire set of decision factors. It’s the unwieldly nature of complex economies that brings down central planning–it’s great in theory, but unworkable in practice. The utilities can only provide a set of parameters that describe a subset of the optimal location decisions. State and local governments will provide another subset. Businesses and developers yet another set and finally customers will likely be the final arbiters if the new electricity market is to thrive.

As a final note, opening up information about the distribution system (which the utilities have jealously guarded for decades) offers an opportunity to better target other programs as well such as energy efficiency and the California Solar Initiative. Why should we waste money on air conditioning upgrades in San Francisco when they are much more needed in Bakersfield? The CPUC has an opportunity to step away from a moribund model in more than distribution planning if it pursues this to its natural conclusion.

Looking beyond performance based ratemaking in New York’s Utility 2.0

Rory Christian of EDF has written about using performance-based ratemaking “+” (PBR+) in New York’s Reforming the Energy Vision proceeding. EDF, in taking an important step for an environmental advocate, recognizes the importance of providing the right economic incentives for market participants to achieve environmental goals. Prescriptive solutions too often are misguided and inflexible leading to failure and high costs.

That said, PBR+ may not be the best solution (and I don’t have the immediate answer to this question.) PBR hasn’t had a great track record in California. Diablo Canyon suffered from excessive costs that led to the push for restructuring. The competitive transition charge (CTC) opened the door for market manipulation. And the CPUC couldn’t say “no” when it awarded incentives for questionable energy efficiency gains. Other jurisdictions have had mixed results. Mechanism design is critically important to make PBR work.

Taking a step back from specific policy proposals, an important perspective to consider is that the “regulated utility” is not the same as “utility shareholders.” Shareholders are the true stakeholders in the discussion about the new utility business model. (Utility managers may hijack that role but that probably is not a sustainable position.) So we should be looking outside the box of standard regulatory tools, even PBRs, and ask “how else can utility shareholders see value from the electricity industry outside of their regulated utility affiliate?” There are potential models for alternative approaches that might ease the political and economic transition to the new energy future.

Chuck Goldman at Lawrence Berkeley National Lab made a presentation on the various business model options that are available. The Energy Services Utility (ESU) is an option that deserves greater exploration, particularly in concert with a distributed system operator (DSO). An ESU might provide a model for utility holding company shareholders to participate. But the devil could be in the details.

Understanding the Challenges of Modeling AB 32 Policy

A summary of the review of the AB 32 Scoping Plan we conducted in 2008 for EDF.

RFF Library Blog

The Aspen Environmental Group, M.Cubed for Environmental Defense / by Richard J. McCann
http://www.edf.org/documents/8902_AB32%20EconModeling%20M3%20final.pdf (full report)
http://www.edf.org/documents/8901_AB32%20AspenEnv%20Modeling%20PolicySum.pdf (summary)

[From press release] A new study released today concludes that state-of-the-science economic models, including those used for the California Air Resources Board’s economic analyses of California’s Global Warming Solutions Act (AB 32), are not capable of simulating the fundamental changes in California’s economy that AB 32 measures are likely to cause. While critics of ARB claim that costs might be underestimated, this new study shows that many benefits also are not represented by models and more modeling isn’t as useful as consideration of lessons from prior policies and economics literature.

The study is timely because CARB will vote on the Proposed Scoping Plan to implement the Global Warming Solutions Act of 2006 (AB 32) on December 11, less than a week away.

In the new study, Dr. McCann reveals that current techniques…

View original post 60 more words

Identifying the barriers to transportation fuel diversity

Tim O’Connor of EDF writes about the benefits of transportation diversification at EDF’s California Dream 2.0. I think that fuel diversity is a useful objective, but achieving that will be difficult due to the network externalities inherent in transportation technologies. Gasoline and diesel vehicles became dominant because having single-fuel refueling networks is more cost effective for both vendors and customers, and reduce the search costs for drivers to find those stations. Think of how many fueling stations someone might have to pass to reach their particular energy source. Investing in a particular fuel requires a certain level of revenue. Note how many local gas stations have closed because they didn’t have enough sales.

For a more recent example, we can look at cell phone operating systems. Initially each manufacturer had their own system, but now virtually all phones are driven by two systems, Android and iOS, while Windows 8 keeps trying to make inroads.

We need to be very aware of the fueling network economics when pushing for new transportation energy sources. Investing in a system is as much a set of business decisions as a policy decision. One approach might be to focus on using particular fuels in a narrow set of sectors and discourage broad sector-wide use. Another might be to use a geographic focus and to set up means of interconnecting across those geographies.

Not talking past each other on California’s transportation fuels cap & trade implementation

Last week, 16 Democratic legislators sent a letter to ARB Chair Mary Nichols asking for a delay in adding transportation fuels to the AB 32 cap and trade program starting January 1, 2015. The legislators raise concerns about how a 15 cent per gallon increase could impact the state’s poor.

I was asked by EDF to sign on to a letter in response. That letter focuses on how much of the anticipated innovation arising from AB 32 is dependent on implementing this phase of cap and trade. However, I think the proposed letter misses an important point by the legislators.

Our state legislators are rightfully concerned about the impacts on those among us who have the least.  Nevertheless, that problem is easily addressed with the tools and resources that are already available to the state. Those families and households who now qualify for the CARE and FERA electric and natural gas utilities rate discounts can be made eligible for an annual rebate equal to the average annual gasoline consumption multiplied by the amount of the GHG allowance cost embedded in the gasoline price.  This rebate could be funded out of the state’s allowance revenue fund. For example, if the price is increased by 15 cents per gallon and the average automobile uses 650 gallons per year, an eligible household could receive $97.50 for each car.

About 30% of households are currently eligible for CARE or FERA. On a statewide basis, the program would cost about $650 million, which is comparable to the cost for CARE for a single utility like PG&E or Southern California Edison. Those legislators who are most concerned can coauthor legislation to put this program in place.