Tag Archives: SCE

“Fixed costs” do not mean “fixed charges”

The California Public Utilities Commission has issued a proposed decision that calls for a monthly fixed charge of $24 for most customers. There is no basis in economic principles that calls for collecting “fixed costs” (too often misidentified) in a fixed charge. This so-called principle gets confused with the second-best solution for regulated monopoly pricing where the monopoly has declining marginal costs that are below average costs which has a two part tariff of a lump sum payment and variable prices at marginal costs. (And Ramsey pricing, which California uses a derivative of that in equal percent marginal cost (EPMC) allocation, also is a second-best efficient pricing method that relies solely on volumetric units.) The evidence for a natural monopoly is that average costs are falling over time as sales expand.

However, as shown by the chart above for PG&E’s distribution and transmission (and SCE’s looks similar), average costs as represented in retail rates are rising. This means that marginal costs must be above average costs. (If this isn’t true then a fully detailed explanation is required—none has been presented so far.) The conditions for regulated monopoly pricing with a lump sum or fixed charge component do not exist in California.

Using the logic that fixed costs should be collected through fixed charges, then the marketplace would be rife with all sorts of entry, access and connection fees at grocery stores, nail salons and other retail outlets as well as restaurants, car dealers, etc. to cover the costs of ownership and leases, operational overhead and other invariant costs. Simply put that’s not the case. All of those producers and providers price on a per unit basis because that’s how a competitive market works. In those markets, customers have the ability to choose and move among sellers, so the seller is forced to recover costs on a single unit price. You might respond, well, cell providers have monthly fixed charges. But that’s not true—those are monthly connection fees that represent the marginal cost of interconnecting to a network. And customers have the option of switching (and many do) to a provider with a lower monthly fee. The unit of consumption is interconnection, which is a longer period than the single momentary instance that economists love because they can use calculus to derive it.

Utility regulation is supposed to mimic the outcome of competitive markets, including pricing patterns. That means that fixed cost recovery through a fixed charge must be limited to a customer-dedicated facility which cannot be used by another customer. That would be the service connection, which has a monthly investment recovery cost of about $10 to $15/month. Everything else must be priced on a volumetric basis as would be in a competitive market. (And the rise of DERs is now introducing true competition into this marketplace.)

The problem is that we’re missing the other key aspect of competitive markets—that investors risk losing their investments due to poor management decisions. Virtually all of the excess stranded costs for California IOUs are due poor management, not “state mandates.” You can look at the differences between in-state IOU and muni rates to see the evidence. (And that an IOU has been convicted of killing nearly 100 people due to malfeasance further supports that conclusion.)

There are alternative solutions to California’s current dilemma but utility shareholders must accept their portion of the financial burden. Right now they are shielded completely as evidenced by record profits and rising share prices.

Retail electricity rate reform will not solve California’s problems

Meredith Fowlie wrote this blog on the proposal to drastically increase California utilities’ residential fixed charges at the Energy Institute at Haas blog. I posted this comment (with some additions and edits) in response.

First, infrastructure costs are responsive to changes in both demand and added generation. It’s just that those costs won’t change for a customer tomorrow–it will take a decade. Given how fast transmission retail rates have risen and have none of the added fixed costs listed here, the marginal cost must be substantially above the current average retail rates of 4 to 8 cents/kWh.

Further, if a customer is being charged a fixed cost for capacity that is being shared with other customers, e.g., distribution and transmission wires, they should be able to sell that capacity to other customers on a periodic basis. While many economists love auctions, the mechanism with the lowest ancillary transaction costs is a dealer market akin a grocery store which buys stocks of goods and then resells. (The New York Stock Exchange is a type of dealer market.) The most likely unit of sale would be in cents per kWh which is the same as today. In this case, the utility would be the dealer, just as today. So we are already in the same situation.

Airlines are another equally capital intensive industry. Yet no one pays a significant fixed charge (there are some membership clubs) and then just a small incremental charge for fuel and cocktails. Fares are based on a representative long run marginal cost of acquiring and maintaining the fleet. Airlines maintain a network just as utilities. Economies of scale matter in building an airline. The only difference is that utilities are able to monopolistically capture their customers and then appeal to state-sponsored regulators to impose prices.

Why are California’s utility rates 30 to 50% or more above the current direct costs of serving customers? The IOUs, and PG&E in particular, over procured renewables in the 2010-2012 period at exorbitant prices (averaging $120/MWH) in part in an attempt to block entry of CCAs. That squandered the opportunity to gain the economics benefits from learning by doing that led to the rapid decline in solar and wind prices over the next decade. In addition, PG&E refused to sell a part of its renewable PPAs to the new CCAs as they started up in the 2014-2017 period. On top of that, PG&E ratepayers paid an additional 50% on an already expensive Diablo Canyon due to the terms of the 1996 Settlement Agreement. (I made the calculations during that case for a client.) And on the T&D side, I pointed out beginning in 2010 that the utilities were overforecasting load growth and their recorded data showed stagnant loads. The peak load from 2006 was the record until 2022 and energy loads have remained largely constant, even declining over the period. The utilities finally started listening the last couple of years but all of that unneeded capital is baked into rates. All of these factors point not to the state or even the CPUC (except as an inept monitor) as being at fault, but rather to the utilities’ mismanagement.

Using Southern California Edison’s (SCE) own numbers, we can illustrate the point. SCE’s total bundled marginal costs in its rate filing are 10.50 cents per kWh for the system and 13.64 cents per kWh for residential customers. In comparison, SCE’s average system rate is 17.62 cents per kWh or 68% higher than the bundled marginal cost, and the average residential rate of 22.44 cents per kWh is 65% higher. From SCE’s workpapers, these cost increases come primarily from four sources.

  1. First, about 10% goes towards various public purpose programs that fund a variety of state-initiated policies such as energy efficiency and research. Much of this should be largely funded out of the state’s General Fund as income distribution through the CARE rate instead. And remember that low income customers are already receiving a 35% discount on rates.
  2. Next, another 10% comes roughly from costs created two decades ago in the wake of the restructuring debacle. The state has now decreed that this revenue stream will instead be used to pay for the damages that utilities have caused with wildfires. Importantly, note that wildfire costs of any kind have not actually reached rates yet. In addition, there are several solutions much less costly than the undergrounding proposed by PG&E and SDG&E, including remote rural microgrids.
  3. Approximately 15% is from higher distribution costs, some of which have been created by over-forecasting load growth over the last 15 years; loads have remained stagnant since 2006.
  4. And finally, around 33% is excessive generation costs caused by paying too much for purchased power agreements signed a decade ago.

An issue raised as rooftop solar spreads farther is the claim that rooftop solar customers are not paying their fair share and instead are imposing costs on other customers, who on average have lower incomes than those with rooftop solar. Yet the math behind the true rate burden for other customers is quite straightforward—if 10% of the customers are paying essentially zero (which they are actually not), the costs for the remaining 90% of the customers cannot go up more than 11% [100%/(100%-10%) = 11% ]. If low-income customers pay only 70% of this—the 11%– then their bills might go up about 8%–hardly a “substantial burden.” (70% x 11% = 7.7%)

As for aligning incentives for electrification, we proposed a more direct alternative on behalf of the Local Government Sustainable Energy Coalition where those who replace a gas appliance or furnace with an electric receive an allowance (much like the all-electric baseline) priced at marginal cost while the remainder is priced at the higher fully-loaded rate. That would reduce the incentive to exit the grid when electrifying while still rewarding those who made past energy efficiency and load reduction investments.

The solution to high rates cannot come from simple rate design; as Old Surfer Dude points out, wealthy customers are just going to exit the grid and self provide. Rate design is just rearranging the deck chairs. The CPUC tried the same thing in the late 1990s with telcom on the assumption that customers would stay put. Instead customers migrated to cell phones and dropped their land lines. The real solution is going to require some good old fashion capitalism with shareholders and associated stakeholders absorbing the costs of their mistakes and greed.

Are PG&E’s customers about to walk?

In the 1990s, California’s industrial customers threatened to build their own self-generation plants and leave the utilities entirely. Escalating generation costs due to nuclear plant cost overruns and too-generous qualifying facilities (QF) contracts had driven up rates, and the technology that made QFs possible also allowed large customers to consider self generating. In response California “restructured” its utility sector to introduce competition in the generation segment and to get the utilities out of that part of the business. Unfortunately the initiative failed, in a big way, and we were left with a hybrid system which some blame for rising rates today.

Those rising rates may be introducing another threat to the utilities’ business model, but it may be more existential this time. A previous blog post described how Pacific Gas & Electric’s 2022 Wildfire Mitigation Plan Update combined with the 2023 General Rate Application could lead to a 50% rate increase from 2020 to 2026. For standard rate residential customers, the average rate could by 41.9 cents per kilowatt-hour.

For an average customer that translates to $2,200 per year per kilowatt of peak demand. Using PG&E’s cost of capital, that implies that an independent self-sufficient microgrid costing $15,250 per kilowatt could be funded from avoiding paying PG&E bills.

The National Renewable Energy Laboratory (NREL) study referenced in this blog estimates that a stand alone residential microgrid with 7 kilowatts of solar paired with a 5 kilowatt / 20 kilowatt-hour battery would cost between $35,000 and $40,000. The savings from avoiding PG&E rates could justify spending $75,000 to $105,000 on such a system, so a residential customer could save up to $70,000 by defecting from the grid. Even if NREL has underpriced and undersized this example system, that is a substantial margin.

This time it’s not just a few large customers with choice thermal demands and electricity needs—this would be a large swath of PG&E’s residential customer class. It would be the customers who are most affluent and most able to pay PG&E’s extraordinary costs. If many of these customers view this opportunity to exit favorably, the utility could truly face a death spiral that encourages even more customers to leave. Those who are left behind will demand more relief in some fashion, but those customers who already defected will not be willing to bail out the company.

In this scenario, what is PG&E’s (or Southern California Edison’s and San Diego Gas & Electric’s) exit strategy? Trying to squeeze current NEM customers likely will only accelerate exit, not stifle it. The recent two-day workshop on affordability at the CPUC avoided discussing how utility investors should share in solving this problem, treating their cost streams as inviolable. The more likely solution requires substantial restructuring of PG&E to lower its revenue requirements, including by reducing income to shareholders.

A misguided perspective on California’s rooftop solar policy

Severin Borenstein at the Energy Institute at Haas has taken another shot at solar rooftop net energy metering (NEM). He has been a continual critic of California’s energy decentralization policies such as those on distribution energy resources (DER) and community choice aggregators (CCAs). And his viewpoints have been influential at the California Public Utilities Commission.

I read these two statements in his blog post and come to a very different conclusions:

“(I)ndividuals and businesses make investments in response to those policies, and many come to believe that they have a right to see those policies continue indefinitely.”

Yes, the investor owned utilities and certain large scale renewable firms have come to believe that they have a right to see their subsidies continue indefinitely. California utilities are receiving subsidies amounting to $5 billion a year due to poor generation portfolio management. You can see this in your bill with the PCIA. This dwarfs the purported subsidy from rooftop solar. Why no call for reforming how we recover these costs from ratepayers and force shareholder to carry their burden? (And I’m not even bringing up the other big source of rate increases in excessive transmission and distribution investment.)

Why wasn’t there a similar cry against bailing out PG&E in not one but TWO bankruptcies? Both PG&E and SCE have clearly relied on the belief that they deserve subsidies to continue staying in business. (SCE has ridden along behind PG&E in both cases to gain the spoils.) The focus needs to be on ALL players here if these types of subsidies are to be called out.

“(T)he reactions have largely been about how much subsidy rooftop solar companies in California need in order to stay in business.”

We are monitoring two very different sets of media then. I see much more about the ability of consumers to maintain an ability to gain a modicum of energy independence from large monopolies that compel that those consumers buy their service with no viable escape. I also see a reactions about how this will undermine directly our ability to reduce GHG emissions. This directly conflicts with the CEC’s Title 24 building standards that use rooftop solar to achieve net zero energy and electrification in new homes.

Along with the effort to kill CCAs, the apparent proposed solution is to concentrate all power procurement into the hands of three large utilities who haven’t demonstrated a particularly adroit ability at managing their portfolios. Why should we put all of our eggs into one (or three) baskets?

Borenstein continues to rely on an incorrect construct for cost savings created by rooftop solar that relies on short-run hourly wholesale market prices instead of the long-term costs of constructing new power plants, transmission rates derived from average embedded costs instead of full incremental costs and an assumption that distribution investment is not avoided by DER contrary to the methods used in the utilities’ own rate filings. He also appears to ignore the benefits of co-locating generation and storage locally–a set up that becomes much less financially viable if a customer adds storage but is still connected to the grid.

Yes, there are problems with the current compensation model for NEM customers, but we also need to recognize our commitments to customers who made investments believing they were doing the right thing. We need to acknowledge the savings that they created for all of us and the push they gave to lower technology costs. We need to recognize the full set of values that these customers provide and how the current electric market structure is too broken to properly compensate what we want customers to do next–to add more storage. Yet, the real first step is to start at the source of the problem–out of control utility costs that ratepayers are forced to bear entirely.

A new agricultural electricity use forecast method holds promise for water use management

Agricultural electricity demand is highly sensitive to water availability. Under “normal” conditions, the State Water Project (SWP) and Central Valley Project (CVP), as well as other surface water supplies, are key sources of irrigation water for many California farmers. Under dry conditions, these water sources can be sharply curtailed, even eliminated, at the same time irrigation requirements are heightened. Farmers then must rely more heavily on groundwater, which requires greater energy to pump than surface water, since groundwater must be lifted from deeper depths.

Over extended droughts, like between 2012 to 2016, groundwater levels decline, and must be pumped from ever deeper depths, requiring even more energy to meet crops’ water needs. As a result, even as land is fallowed in response to water scarcity, significantly more energy is required to water remaining crops and livestock. Much less pumping is necessary in years with ample surface water supply, as rivers rise, soils become saturated, and aquifers recharge, raising groundwater levels.

The surface-groundwater dynamic results in significant variations in year-to-year agricultural electricity sales. Yet, PG&E has assigned the agricultural customer class a revenue responsibility based on the assumption that “normal” water conditions will prevail every year, without accounting for how inevitable variations from these circumstances will affect rates and revenues for agricultural and other customers.

This assumption results in an imbalance in revenue collection from the agricultural class that does not correct itself even over long time periods, harming agricultural customers most in drought years, when they can least afford it. Analysis presented presented by M.Cubed on behalf of the Agricultural Energy Consumers Association (AECA) in the 2017 PG&E General Rate Case (GRC) demonstrated that overcollections can be expected to exceed $170 million over two years of typical drought conditions, with the expected overcollection $34 million in a two year period. This collection imbalance also increases rate instability for other customer classes.

Figure-1 compares the difference between forecasted loads for agriculture and system-wide used to set rates in the annual ERRA Forecast proceedings (and in GRC Phase 2 every three years) and the actual recorded sales for 1995 to 2019. Notably, the single largest forecasting error for system-wide load was a sales overestimate of 4.5% in 2000 and a shortfall in 2019 of 3.7%, while agricultural mis-forecasts range from an under-forecast of 39.2% in the midst of an extended drought in 2013 to an over-forecast of 18.2% in one of the wettest years on record in 1998. Load volatility in the agricultural sector is extreme in comparison to other customer classes.

Figure-2 shows the cumulative error caused by inadequate treatment of agricultural load volatility over the last 25 years. An unbiased forecasting approach would reflect a cumulative error of zero over time. The error in PG&E’s system-wide forecast has largely balanced out, even though the utility’s load pattern has shifted from significant growth over the first 10 years to stagnation and even decline. PG&E apparently has been able to adapt its forecasting methods for other classes relatively well over time.

The accumulated error for agricultural sales forecasting tells a different story. Over a quarter century the cumulative error reached 182%, nearly twice the annual sales for the Agricultural class. This cumulative error has consequences for the relative share of revenue collected from agricultural customers compared to other customers, with growers significantly overpaying during the period.

Agricultural load forecasting can be revised to better address how variations in water supply availability drive agricultural load. Most importantly, the final forecast should be constructed from a weighted average of forecasted loads under normal, wet and dry conditions. The forecast of agricultural accounts also must be revamped to include these elements. In addition, the load forecast should include the influence of rates and a publicly available data source on agricultural income such as that provided by the USDA’s Economic Research Service.

The Forecast Model Can Use An Additional Drought Indicator and Forecasted Agricultural Rates to Improve Its Forecast Accuracy

The more direct relationship to determine agricultural class energy needs is between the allocation of surface water via state and federal water projects and the need to pump groundwater when adequate surface water is not available from the SWP and federal CVP. The SWP and CVP are critical to California agriculture because little precipitation falls during the state’s Mediterranean-climate summer and snow-melt runoff must be stored and delivered via aqueducts and canals. Surface water availability, therefore, is the primary determinant of agricultural energy use, while precipitation and related factors, such as drought, are secondary causes in that they are only partially responsible for surface water availability. Other factors such as state and federal fishery protections substantially restrict water availability and project pumping operations greatly limiting surface water deliveries to San Joaquin Valley farms.

We found that the Palmer Drought Stress Index (PDSI) is highly correlated with contract allocations for deliveries through the SWP and CVP, reaching 0.78 for both of them, as shown in Figure AECA-3. (Note that the correlation between the current and lagged PDSI is only 0.34, which indicates that both variables can be included in the regression model.) Of even greater interest and relevance to PG&E’s forecasting approach, the correlation with the previous year’s PDSI and project water deliveries is almost as strong, 0.56 for the SWP and 0.53 for the CVP. This relationship can be seen also in Figure-3, as the PDSI line appears to lead changes in the project water deliveries. This strong relationship with this lagged indicator is not surprising, as both the California Department of Water Resources and U.S. Bureau of Reclamation account for remaining storage and streamflow that is a function of soil moisture and aquifers in the Sierras.

Further, comparing the inverse of water delivery allocations, (i.e., the undelivered contract shares), to the annual agricultural sales, we can see how agricultural load has risen since 1995 as the contract allocations delivered have fallen (i.e., the undelivered amount has risen) as shown in Figure-4. The decline in the contract allocations is only partially related to the amount of precipitation and runoff available. In 2017, which was among the wettest years on record, SWP Contractors only received 85% of their allocations, while the SWP provided 100% every year from 1996 to 1999. The CVP has reached a 100% allocation only once since 2006, while it regularly delivered above 90% prior to 2000. Changes in contract allocations dictated by regulatory actions are clearly a strong driver in the growth of agricultural pumping loads but an ongoing drought appears to be key here. The combination of the forecasted PDSI and the lagged PDSI of the just concluded water year can be used to capture this relationship.

Finally, a “normal” water year rarely occurs, occurring in only 20% of the last 40 years. Over time, the best representation of both surface water availability and the electrical load dependent on it is a weighted average across the probabilities of different water year conditions.

Proposed Revised Agricultural Forecast

We prepared a new agricultural load forecast for 2021 implementing the changes recommended herein. In addition, the forecasted average agricultural rate was added, which was revealed to be statistically valid. The account forecast was developed using most of the same variables as for the sales forecast to reflect similarities in drivers of both sales and accounts.

Figure-5 compares the performance of AECA’s proposed model to PG&E’s model filed in its 2021 General Rate Case. The backcasted values from the AECA model have a correlation coefficient of 0.973 with recorded values,[1] while PG&E’s sales forecast methodology only has a correlation of 0.742.[2] Unlike PG&E’s model almost all of the parameter estimates are statistically valid at the 99% confidence interval, with only summer and fall rainfall being insignificant.[3]

AECA’s accounts forecast model reflects similar performance, with a correlation of 0.976. The backcast and recorded data are compared in Figure-6. For water managers, this chart shows how new groundwater wells are driven by a combination of factors such as water conditions and electricity prices.




Can Net Metering Reform Fix the Rooftop Solar Cost Shift?: A Response

A response to Severin Borenstein’s post at UC Energy Institute where he posits a large subsidy flowing to NEM customers and proposes an income-based fixed charge as the remedy. Borenstein made the same proposal at a later CPUC hearing.

The CPUC is now considering reforming the current net energy metering (NEM) tariffs in the NEM 3.0 proceeding. And the State Legislature is considering imposing a change by fiat in AB 1139.

First, to frame this discussion, economists are universally guilty of status quo bias in which we (since I’m one) too often assume that changing from the current physical and institutional arrangement is a “cost” in an implicit assumption that the current situation was somehow arrived at via a relatively benign economic process. (The debate over reparations for slavery revolve around this issue.) The same is true for those who claim that NEM customers are imposing exorbitant costs on other customers.

There are several issues to be considered in this analysis.

1) In looking at the history of the NEM rate, the emergence of a misalignment between retail rates that compensate solar customers and the true marginal costs of providing service (which are much more than the hourly wholesales price–more on that later) is a recent event. When NEM 1.0 was established residential rates were on the order of 15 c/kWh and renewable power contracts were being signed at 12 to 15 c/kWh. In addition, the transmission costs were adding 2 to 4 c/kWh. This was the case through 2015; NEM 1.0 expired in 2016. NEM 2.0 customers were put on TOU rates with evening peak loads, so their daytime output is being priced at off peak rates midday and they are paying higher on peak rates for usage. This despite the fact that the difference in “marginal costs” between peak and off wholesale costs are generally on the order of a penny per kWh. (PG&E NEM customers also pay a $10/month fixed charge that is close to the service connection cost.) Calculating the net financial flows is more complicated and deserve that complex look than what can be captured in a simple back of the envelope calculation.

2) If we’re going to dig into subsidies, the first place to start is with utility and power plant shareholders. If we use the current set of “market price benchmarks” (which are problematic as I’ll discuss), out of PG&E’s $5.2 billion annual generation costs, over $2 billion or 40% are “stranded costs” that are subsidies to shareholders for bad investments. In an efficient marketplace those shareholders would have to recover those costs through competitively set prices, as Jim Lazar of the Regulatory Assistance Project has pointed out. One might counter those long term contracts were signed on behalf of these customers who now must pay for them. Of course, overlooking whether those contracts were really properly evaluated, that’s also true for customers who have taken energy efficiency measures and Elon Musk as he moves to Texas–we aren’t discussing whether they also deserve a surcharge to cover these costs. But beyond this, on an equity basis, NEM 1.0 customers at least made investments based on an expectation, that the CPUC did not dissuade them of this belief (we have documentation of how at least one county government was mislead by PG&E on this issue in 2016). If IOUs are entitled to financial protection (and the CPUC has failed to enact the portfolio management incentive specified in AB57 in 2002) then so are those NEM customers. If on the other hand we can reopen cost recovery of those poor portfolio management decisions that have led to the incentive for retail customers to try to exit, THEN we can revisit those NEM investments. But until then, those NEM customers are no more subsidized than the shareholders.

3) What is the true “marginal cost”? First we have the problem of temporal consistency between generation vs. transmission and distribution grid (T&D) costs. Economists love looking at generation because there’s a hourly (or subhourly) “short run” price that coincides nicely with economic theory and calculus. On the other hand, those darn T&D costs are lumpy and discontinuous. The “hourly” cost for T&D is basically zero and the annual cost is not a whole lot better. The current methods debated in the General Rate Cases (GRC) relies on aggregating piecemeal investments without looking at changing costs as a whole. Probably the most appropriate metric for T&D is to calculate the incremental change in total costs by the number of new customers. Given how fast utility rates have been rising over the last decade I’m pretty sure that the “marginal cost” per customer is higher than the average cost–in fact by definition marginal costs must be higher. (And with static and falling loads, I’m not even sure how we calculated the marginal costs per kwh. We can derive the marginal cost this way FERC Form 1 data.) So how do we meld one marginal cost that might be on a 5-minute basis with one that is on a multi-year timeframe? This isn’t an easy answer and “rough justice” can cut either way on what’s the truly appropriate approximation.

4) Even if the generation cost is measured sub hourly, the current wholesale markets are poor reflections of those costs. Significant market distortions prevent fully reflecting those costs. Unit commitment costs are often subsidized through out of market payments; reliability regulation forces investment that pushes capacity costs out of the hourly market, added incremental resources–whether for added load such as electrification or to meet regulatory requirements–are largely zero-operating cost renewables of which none rely on hourly market revenues for financial solvency; in California generators face little or no bankruptcy risk which allows them to underprice their bids; on the flip side, capacity price adders such as ERCOT’s ORDC overprices the value of reliability to customers as a backdoor way to allow generators to recover investments through the hourly market. So what is the true marginal cost of generation? Pulling down CAISO prices doesn’t look like a good primary source of data.

We’re left with the question of what is the appropriate benchmark for measuring a “subsidy”? Should we also include the other subsidies that created the problem in the first place?

AB1139 would undermine California’s efforts on climate change

Assembly Bill 1139 is offered as a supposed solution to unaffordable electricity rates for Californians. Unfortunately, the bill would undermine the state’s efforts to reduce greenhouse gas emissions by crippling several key initiatives that rely on wider deployment of rooftop solar and other distributed energy resources.

  • It will make complying with the Title 24 building code requiring solar panel on new houses prohibitively expensive. The new code pushes new houses to net zero electricity usage. AB 1139 would create a conflict with existing state laws and regulations.
  • The state’s initiative to increase housing and improve affordability will be dealt a blow if new homeowners have to pay for panels that won’t save them money.
  • It will make transportation electrification and the Governor’s executive order aiming for 100% new EVs by 2035 much more expensive because it will make it much less economic to use EVs for grid charging and will reduce the amount of direct solar panel charging.
  • Rooftop solar was installed as a long-term resource based on a contractual commitment by the utilities to maintain pricing terms for at least the life of the panels. Undermining that investment will undermine the incentive for consumers to participate in any state-directed conservation program to reduce energy or water use.

If the State Legislature wants to reduce ratepayer costs by revising contractual agreements, the more direct solution is to direct renegotiation of RPS PPAs. For PG&E, these contracts represent more than $1 billion a year in excess costs, which dwarfs any of the actual, if any, subsidies to NEM customers. The fact is that solar rooftops displaced the very expensive renewables that the IOUs signed, and probably led to a cancellation of auctions around 2015 that would have just further encumbered us.

The bill would force net energy metered (NEM) customers to pay twice for their power, once for the solar panels and again for the poor portfolio management decisions by the utilities. The utilities claim that $3 billion is being transferred from customers without solar to NEM customers. In SDG&E’s service territory, the claim is that the subsidy costs other ratepayers $230 per year, which translates to $1,438 per year for each NEM customer. But based on an average usage of 500 kWh per month, that implies each NEM customer is receiving a subsidy of $0.24/kWh compared to an average rate of $0.27 per kWh. In simple terms, SDG&E is claiming that rooftop solar saves almost nothing in avoided energy purchases and system investment. This contrasts with the presumption that energy efficiency improvements save utilities in avoided energy purchases and system investments. The math only works if one agrees with the utilities’ premise that they are entitled to sell power to serve an entire customer’s demand–in other words, solar rooftops shouldn’t exist.

Finally, this initiative would squash a key motivator that has driven enthusiasm in the public for growing environmental awareness. The message from the state would be that we can only rely on corporate America to solve our climate problems and that we can no longer take individual responsibility. That may be the biggest threat to achieving our climate management goals.

What is driving California’s high electricity prices?

This report by Next10 and the University of California Energy Institute was prepared for the CPUC’s en banc hearing February 24. The report compares average electricity rates against other states, and against an estimate of “marginal costs”. (The latter estimate is too low but appears to rely mostly on the E3 Avoided Cost Calculator.) It shows those rates to be multiples of the marginal costs. (PG&E’s General Rate Case workpapers calculates that its rates are about double the marginal costs estimated in that proceeding.) The study attempts to list the reasons why the authors think these rates are too high, but it misses the real drivers on these rate increases. It also uses an incorrect method for calculating the market value of acquisitions and deferred investments, using the current market value instead of the value at the time that the decisions were made.

We can explore the reasons why PG&E’s rates are so high, much of which is applicable to the other two utilities as well. Starting with generation costs, PG&E’s portfolio mismanagement is not explained away with a simple assertion that the utility bought when prices were higher. In fact, PG&E failed in several ways.

First, PG&E knew about the risk of customer exit as early as 2010 as revealed during the PCIA rulemaking hearings in 2018. PG&E continued to procure as though it would be serving its entire service area instead of planning for the rise of CCAs. Further PG&E also was told as early as 2010 (in my GRC testimony) that it was consistently forecasting too high, but it didn’t bother to correct thee error. Instead, service area load is basically at the save level that it was a decade ago.

Second, PG&E could have procured in stages rather than in two large rounds of request for offers (RFOs) which it finished by 2013. By 2011 PG&E should have realized that solar costs were dropping quickly (if they had read the CEC Cost of Generation Report that I managed) and that it should have rolled out the RFOs in a manner to take advantage of that improvement. Further, they could have signed PPAs for the minimum period under state law of 10 years rather than the industry standard 30 years. PG&E was managing its portfolio in the standard practice manner which was foolish in the face of what was occurring.

Third, PG&E failed to offer part of its portfolio for sale to CCAs as they departed until 2018. Instead, PG&E could have unloaded its expensive portfolio in stages starting in 2010. The ease of the recent RPS sales illustrates that PG&E’s claims about creditworthiness and other problems had no foundation.

I calculated the what the cost of PG&E’s mismanagement has been here. While SCE and SDG&E have not faced the same degree of exit by CCAs, the same basic problems exist in their portfolios.

Another factor for PG&E is the fact that ratepayers have paid twice for Diablo Canyon. I explain here how PG&E fully recovered its initial investment costs by 1998, but as part of restructuring got to roll most of its costs back into rates. Fortunately these units retire by 2025 and rates will go down substantially as a result.

In distribution costs, both PG&E and SCE requested over $2 billion for “new growth” in each of its GRCs since 2009, despite my testimony showing that growth was not going to materialize, and did not materialize. If the growth was arising from the addition of new developments, the developers and new customers should have been paying for those additions through the line extension rules that assign that cost responsibility. The utilities’ distribution planning process is opaque. When asked for the workpapers underlying the planning process, both PG&E and SCE responded that the entirety were contained in the Word tables in each of their testimonies. The growth projections had not been reconciled with the system load forecasts until this latest GRC, so the totals of the individual planning units exceeded the projected total system growth (which was too high as well when compared to both other internal growth projections and realized growth). The result is a gross overinvestment in distribution infrastructure with substantial overcapacity in many places.

For transmission, the true incremental cost has not been fully reported which means that other cost-effective solutions, including smaller and closer renewables, have been ignored. Transmission rates have more than doubled over the last decade as a result.

The Next10 report does not appear to reflect the full value of public purpose program spending on energy efficiency, in large part because it uses a short-run estimate of marginal costs. The report similarly underestimates the value of behind-the-meter solar rooftops as well. The correct method for both is to use the market value of deferred resources–generation, transmission and distribution–when those resources were added. So for example, a solar rooftop installed in 2013 was displacing utility scale renewables that cost more than $100 per megawatt-hour. These should not be compared to the current market value of less than $60 per megawatt-hour because that investment was not made on a speculative basis–it was a contract based on embedded utility costs.

How to increase renewables? Change the PCIA

California is pushing for an increase in renewable generation to power its electrification of buildings and the transportation sector. Yet the state maintains a policy that will impede reaching that goal–the power cost indifference adjustment (PCIA) rate discourages the rapidly growing community choice aggregators (CCAs) from investing directly in new renewable generation.

As I wrote recently, California’s PCIA rate charged as an exit fee on departed customers is distorting the electricity markets in a way that increases the risk of another energy crisis similar to the debacle in 2000 to 2001. An analysis of the California Independent System Operator markets shows that market manipulations similar to those that created that crisis likely led to the rolling blackouts last August. Unfortunately, the state’s energy agencies have chosen to look elsewhere for causes.

The even bigger problem of reaching clean energy goals is created by the current structure of the PCIA. The PCIA varies inversely with the market prices in the market–as market prices rise, the PCIA charged to CCAs and direct access (DA) customers decreases. For these customers, their overall retail rate is largely hedged against variation and risk through this inverse relationship.

The portfolios of the incumbent utilities, i.e., Pacific Gas and Electric, Southern California Edison and San Diego Gas and Electric, are dominated by long-term contracts with renewables and capital-intensive utility-owned generation. For example, PG&E is paying a risk premium of nearly 2 cents per kilowatt-hour for its investment in these resources. These portfolios are largely impervious to market price swings now, but at a significant cost. The PCIA passes along this hedge through the PCIA to CCAs and DA customers which discourages those latter customers from making their own long term investments. (I wrote earlier about how this mechanism discouraged investment in new capacity for reliability purposes to provide resource adequacy.)

The legacy utilities are not in a position to acquire new renewables–they are forecasting falling loads and decreasing customers as CCAs grow. So the state cannot look to those utilities to meet California’s ambitious goals–it must incentivize CCAs with that task. The CCAs are already game, with many of them offering much more aggressive “green power” options to their customers than PG&E, SCE or SDG&E.

But CCAs place themselves at greater financial risk under the current rules if they sign more long-term contracts. If market prices fall, they must bear the risk of overpaying for both the legacy utility’s portfolio and their own.

The best solution is to offer CCAs the opportunity to make a fixed or lump sum exit fee payment based on the market value of the legacy utility’s portfolio at the moment of departure. This would untie the PCIA from variations in the future market prices and CCAs would then be constructing a portfolio that hedges their own risks rather than relying on the implicit hedge embedded in the legacy utility’s portfolio. The legacy utilities also would have to manage their bundled customers’ portfolio without relying on the cross subsidy from departed customers to mitigate that risk.

Vegetation maintenance the new “CFL” for wildfire management

PG&E has been aggressively cutting down trees as part of its attempt to mitigate wildfire risk, but those efforts may be creating their own risks. Previously, PG&E has been accused of just focusing numeric targets over effective vegetation management. This situation is reminiscent of how the utilities pursued energy efficiency prior to 2013 with a seemingly single-minded focus on compact fluorescent lights (CFLs). And that focus did not end well, including leading to both environmental degradation and unearned incentives for utilities.

CFLs represented about 20% of the residential energy efficiency program spending in 2009. CFLs were easy for the utilities–they just delivered steeply discounted, or even free, CFLs to stores and they got to count each bulb as an “energy savings.” By 2013, the CPUC ordered the utilities to ramp down spending on CFLs as a new cost-effective technology emerged (LEDs) and the problem of disposing of mercury in the ballasts of CFLs became apparent. But more importantly, it turned out that CFLs were just sitting in closets, creating much fewer savings than estimated. (It didn’t help that CFLs turned out to have a much shorter life than initially estimated as well.) Even so, the utilities were able claim incentives from the California Public Utilities Commission. Ultimately, it became apparent that CFLs were largely a mistake in the state’s energy efficiency portfolio.

Vegetation management seems to be the same “easy number counting” solution that the utilities, particularly PG&E, have adopted. The adverse consequences will be significant and it won’t solve the problem in the long. Its one advantage is that it allows the utilities to maintain their status quo position at the center of the utility network.

Other alternatives include system hardening such as undergrounding or building microgrids in rural communities to allow utilities to deenergize the grid while maintaining local power. The latter option appears to be the most cost effective solution, but it is also the most threatening to the current position of the incumbent utility by giving customers more independence.