Tag Archives: RPS

PG&E has cost California over $3 billion by mismanaging its RPS portfolio

CCA Savings

When community choice aggregators take up serving PG&E customers, PG&E saves the cost of having to procure power for the departed load. Instead the CCAs bear that cost for that power. The savings to PG&E’s bundled customers are not fully reflected when calculating the exit fee (known as the power charge indifference adjustment or PCIA) for those CCAs. As a result, the exit fee does not reflect the true value that CCAs provide to PG&E and its bundled customers.

The chart above shows the realized and potential savings to PG&E from the departure of CCA customers. The realized part is the avoided costs of procuring resources to meet that load, shown in yellow. The second part is the foregone sales opportunity if PG&E had sold a portion of its portfolio to the CCAs at the going price when they departed. In 2019, these combined savings could have reached $3.2 billion if PG&E had acted prudently.

Many local governments launched CCAs to address their climate goals, and CCAs issued multiple requests for offers of RPS energy.  However, PG&E failed to respond to this opportunity to sell excess renewable energy no longer needed to serve their customers.  By deciding to hold these unneeded resources in a declining market, PG&E accumulated additional losses every year.  Indeed, the assigned Judge on the exit-fee proceeding at the CPUC concluded that PG&E must benefit from “holding back the RECs [renewable energy credits] for some reason.”

This willingness to hold onto an unneeded resource that loses value every year is contrary to prudent management.  However, shareholders, are shielded entirely from contract that are too costly, and only pay penalties for failing to meet RPS targets.  Instead, ratepayers—both bundled and CCA—pay all of the excessive costs, and shareholders only have a strong incentive to over-procure using those ratepayer dollars to avoid any possibility of reduced shareholder profits.  Holding these contracts also inflates the exit-fee departed customers must pay, making it harder for alternatives like public power and distributed generation to PG&E to thrive.

When Sonoma Clean Power launched in 2014, the average price of RPS energy was $128/MWh.  It has declined every year, and now sits at $57/MWh.  PG&E’s decision to not sell excess energy at 2014 prices, and to protect shareholders at the expense of ratepayers has cost customers over $3 billion dollars in the last 6 years as shown in the green columns below.  As RPS prices continue to decline, and the amount of customer departing increases, this figure will continue to increase every year.  Indeed, it surpassed $1.1 billion for 2019 alone.

PGAE Mismanagement Costs

Further, the hedging value of the RPS resources that PG&E listed as key attribute of holding these PPAs instead of disposing of them has diminished dramatically since PG&E pushed that as its strategy in its 2014 Bundled Procurement Plan. As shown in the chart above, the hedge value fell $1.3 billion from 2014 to 2019, from a high of $961 million to a burden of $343 million. PG&E’s hedge now adds $33/MWH to the cost of its renewables portfolio.

In comparison, Southern California Edison’s renewables portfolio costs just under $20/MWH less than PG&E’s. SCE did not rush into signing PPAs like PG&E and did not sign them for as long of terms as PG&E.


U. of Chicago misses mark on evaluating RPS costs


The U. of Chicago just released a working paper “Do Renewable Portfolio Standards Deliver?” that purports to assess the added costs of renewable portfolio standards adopted by states. The paper has two obvious problems that make the results largely useless for policy development purposes.

First, it’s entirely retrospective and then tries to make conclusions about future actions. The paper ignores that the high initial costs for renewables was driven down by a combination of RPS and other policies (e.g. net energy metering or NEM), and on a going forward basis, the renewables are now cost competitive with conventional resources. As a result, the going forward cost of GHG reductions is much smaller than the historic costs. In fact, the much more interesting question is “what would be the average cost of GHG reductions by moving from the current low penetration rate of renewables to substantially higher levels across the entire U.S., e.g., 50%, 60% etc. to 100%?” The high initial investment costs are then highly diluted by the now cost effective renewables.

Second, the abstract makes this bizarre statement “(t)hese cost estimates significantly exceed the marginal operational costs of renewables and likely reflect costs that renewables impose on the generation system…” Um, the marginal “operational” costs of renewables generally is pretty damn close to zero! Are the authors trying to make the bizarre claim (that I’ve addressed previously) that renewables should be priced at their “marginal operational costs”? This seems to reflect an remarkable naivete on the part of the authors. Based on this incorrect attribution, the authors cannot make any assumptions about what might be causing the rate difference.

Further, the authors appear to attribute the entire difference in rates to imposing an RPS standard. The fact is that these 29 states generally have also been much more active in other efforts to promote renewables, including for customers through NEM and DER rates, and to reduce demand. All of these efforts reduce load, which means that fixed costs are spread over a fewer amount of kilowatt-hours, which then causes rates to rise. The real comparison should be the differences in annual customer bills after accounting for changes in annual demand.

The authors also try to assign stranded cost recovery as a cost of GHG recovery. This is a questionable assignment since these are sunk costs which economists typically ignore. If we are to account for lost investment due to obsolescence of an older technology, economists are going to have go back and redo a whole lot of benefit-cost analyses! The authors would have to explain the special treatment of these costs.

Why do economists keep producing these papers in which they assume the world is static and that the future will be just like the past, even when the evidence of a rapidly changing scene is embedded in the data they are using?

The Business Roundtable takes the wrong lesson from California’s energy costs


The California Business Roundtable authored an article in the San Francisco Chronicle claiming that the we only need to look to California’s energy prices to see what would happen with the “Green New Deal” proposed by the Congressional Democrats.

That article has several errors and is misleading in others aspects. First, California’s electricity rates are high because of the renewable contracts signed nearly a decade ago when renewables were just evolving and much higher cost. California’s investment was part of the reason that solar and wind costs are now lower than existing coals plants (new study shows 75% of coal plants are uneconomic) and competitive with natural gas. Batteries that increase renewable operations have almost become cost effective. It also claims that reliability has “gone down” when in fact we still have a large reserve margin. The California Independent System Operator in fact found a 23% reserve margin when the target is only 17%. We also have the ability to install batteries quickly to solve that issue. PG&E is installing over 500 MW of batteries right now to replace a large natural gas plant.

For the rest of the U.S., consumers will benefit from these lower costs today. Californians have paid too much for their power to date, due to mismanagement by PG&E and the other utilities, but elsewhere will be able to avoid these foibles.

(Graphic: BNEF)

Charging with the sun…really!


Severin Borenstein at the University of California’s Energy Institute at Haas posted on whether a consumer buying an electric vehicle was charging it with power from renewables. I have been considering the issue of how our short-run electricity markets are incomplete and misleading. I posted this response on that blog:

As with many arguments that look quite cohesive, it is based on key unstated premises that if called into question undermine the conclusions. I would relabel the “correct” perspective as the “conventional” which assumes that the resources at the margin are defined by short-run operational decisions. This is the basic premise of the FERC-designed power market framework–somehow all of those small marginal energy increases eventually add up into one large new powerplant. This is the standard economic assumption that a series of “putty” transactions in the short term will evolve into a long term “clay” investment. (It’s all of those calculus assumptions about continuity that drive this.) This was questionable in 1998 as it became apparent that the capacity market would have to run separately from the energy market, and is now even more questionable as we replace fossil fuel with renewables.

I would call the fourth perspective as “dynamic”. From this perspective these short run marginal purchases on the CAISO are for balancing to meet current demand. As Marc Joseph pointed out, all of the new incremental demand is being met in a completely separate market that only uses the CAISO as a form of a day to day clearinghouse–the bilateral PPAs. No load serving entity is looking to the CAISO as their backstop resource source. Those long term PPAs are almost universally renewables–even in states without RPS standards. In addition, fossil fueled plants–coal and gas–are being retired and replaced by solar and wind, and that is an additional marginal resource not captured in the CAISO market.

So when a consumer buys a new EV, that added load is being met with renewables added to either meet new load or replace retired fossil. Because these renewables have zero operating costs, they don’t show up in the CAISO’s “marginal” resources for simple accounting reasons, not for fundamental economic reasons. And when that consumer also adds solar panels at the same time, those panels don’t show up at all in the CAISO transactions and are ignored under the conventional view.

There is an issue of resource balancing costs in the CAISO incurred by one type of resource versus another, but that cost is only a subcomponent of the overall true marginal cost from a dynamic perspective.

So how we view the difference between “putty” and “clay” increments is key to assessing whether a consumer is charging their EV with renewables or not.

Study shows RPS spillover positive to other states


A study in the Journal of the Association of Environmental and Resource Economics entitled “External Impacts of Local Energy Policy: The Case of Renewable Portfolio Standards” finds that increasing the renewable portfolio standard (RPS) in one state reduces coal generation in neighboring states through trading of renewable energy credits (RECs). This contrasts with findings on greenhouse gas emission “leakage” under California’s cap and trade program put forth by the authors at the Energy Institute at Haas at the University of California here and here.

These latter set of findings has been used California Public Utilities Commissioners to argue against the use of RECs and implication that community choice aggregators (CCAs) are not moving forward increased renewables generation. This new study appears to land on the side of the CCAs which have argued that even relying on RECs in the short run have a positive effect reducing GHG emissions in the West.

Why the CPUC has it wrong on the PCIA

Nick Chaset is the CEO of East Bay Community Energy which is a community choice aggregator (CCA) that serves Alameda County. He also was Commission President Michael Picker’s chief advisor until last year when he left for EBCE. He explains in this article how two proposed decisions that the CPUC is considering are fundamentally wrong and will shift cost onto CCA customers. (I testified on behalf of CalCCA in this proceeding. I’ll have more on this before the Commission’s scheduled vote October 11.)

Figure 1 – CPUC’s Proposed Resource Adequacy Value vs. True Market Values


Figure 2 – GHG Premium Value Missing from CPUC Proposed Decision


Figure 3 – Falling Utility Rates as Customers Depart Filed in Their ERRA Rate Applications



Another bad legislative idea: Pushing RPS purchase


The California Legislature is considering a bill (AB 893) that would require the state’s regulated utilities (including CCAs as well as investor-owned) to buy at least 4,250 megawatts of renewables before federal tax credits expire in 2022.

Unfortunately, this will not create the cost savings that seem so obvious. This argument was made by the renewable energy plant owners in the Diablo Canyon Power Plant retirement case (A.16-08-006) and rejected by the CPUC in its decision. While the tax credits lower current costs, these are more than offset by waiting for technology costs to fall even further, as shown by the solar power forecast above. Combined with the time value of money (discounting), the value of waiting far outweighs prematurely buying renewables.

The legislature already passed a bill (SB 1090) that requires the CPUC to ensure that GHG emissions will not rise when Diablo Canyon retires in 2024 and 2025 when approving integrated resource plans. (Whether the governor signs this overly directive law is another question.) And SB 100 requires reaching 100% carbon free by 2045. A study just released by the Energy Institute at Haas indicates that renewables to date have depressed energy market prices, discouraging further investment. And the CAISO is “managing oversupply” created by the current renewable generation.

And there’s a further problem–with a large number of customers moving from the IOUs to CCAs across all three utilities, the question is “who should be responsible for buying this power?” The CCAs will have their own preferences (often locally and community-scale) that will conflict with any choices made by the IOUs. The CCAs are already saddled with poor procurement and portfolio management decisions by the IOUs through exit fees. (PG&E has an embedded risk premium of $33 per megawatt-hour in its RPS portfolio costs.) Why would we want the IOUs to continue to mismanage our power resources?

Repost: CAISO notches record, serving 56.7% of demand with renewable energy in one day | Utility Dive

Solar and wind power combined also hit a peak on the same day by serving 49.2% of demand.

Source: CAISO notches record, serving 56.7% of demand with renewable energy in one day | Utility Dive

When is $100 billion not that big?


When it’s measured against $18,675 billion ($18.7 trillion) produced by the U.S. economy. The Heritage Foundation issued a report claiming the Obama Administration imposed $107 billion in new burdens over seven years. That sounds like a huge amount, but that’s only 0.6% (six-tenths of a percent) of the economy. And that’s spread over seven years which means that this the reduction in the GDP growth rate was only 0.08% (eight hundredths of a percent) per year. Against an annual average growth rate of over 2%, that’s a trivial amount. Another way to think of it is this way: if you had a dinner bill from Applebee’s for $19, would you not by dinner it if cost a dime more? Probably not–you wouldn’t even notice.

Plus, the HF’s estimate ignores the benefits of those regulations. This graphic from the OMB that shows the estimated relative benefits to costs of regulation.


I won’t dig too deeply into the Heritage Foundation’s analysis other than to make a couple of notes about about alternative perspectives that I am familiar with:

  • Heritage Foundation claims that the Clean Power Plan has cost $7.2 billion as the single largest increment. Yet Lawrence Berkeley National Laboratory (which is much better qualified on this issue than the HF) just released a study showing the net financial “costs” of the various renewable portfolio standard (RPS) requirements is actually a benefit $47 to $109 billion. (And that ignores the environmental benefits identified in the report.)
  • After the 2008 financial debacle, the industry was going to face increased regulation to reign in its behavior during the previous decade. So increased regulation under Dodd-Frank is to be expected. And the better question might be what is the drag on the economy from high financial-related transaction costs? One study found that transaction costs may be as high at 45% in the U.S. economy. The financial and legal sectors likely are a bigger drag than government regulation.
  • On FCC net neutrality, see a previous post about how bigger corporations and economic concentration reduces innovation, which leads to reduced growth. Net neutrality is intended to fight that concentration.

Are the benefits of an RPS correct?

Lawrence Berkeley Lab released a report estimating the economic benefits from the renewable portfolio standards (RPS) around the U.S. Two surprising findings were:

  • ratepayers saved up to $1.2 billion in wholesale power costs (on top of a $1.3-$3.7 billion reduction in natural gas costs from reduced overall demand); and
  • air quality benefits were about equal to GHG reductions in economic value.

Both of these claims require a deeper review because they run contrary to previous analyses.

Based on PG&E’s Power Charge Indifference Adjustment (PCIA), the renewables contracts that it holds are increasing its rates by almost 2 cents per kilowatt-hour. It is only recently that renewable contract prices have started approaching conventional resource costs, so it’s hard to understand how an RPS could have already reduced electricity rates. (I do see that this will eventually be the case.)

Typically the emission reduction benefits from GHG reductions are several multiples of those from criteria air pollutants (e.g., NOx and volatile organic compounds (VOC or ROG) that produce ozone; particulate matter (PM 2.5)). For example, ClimateCost has issued studies estimating reduced energy impacts and health benefits compared to air quality benefits that show much larger GHG benefits.