Tag Archives: RPS

What is driving California’s high electricity prices?

This report by Next10 and the University of California Energy Institute was prepared for the CPUC’s en banc hearing February 24. The report compares average electricity rates against other states, and against an estimate of “marginal costs”. (The latter estimate is too low but appears to rely mostly on the E3 Avoided Cost Calculator.) It shows those rates to be multiples of the marginal costs. (PG&E’s General Rate Case workpapers calculates that its rates are about double the marginal costs estimated in that proceeding.) The study attempts to list the reasons why the authors think these rates are too high, but it misses the real drivers on these rate increases. It also uses an incorrect method for calculating the market value of acquisitions and deferred investments, using the current market value instead of the value at the time that the decisions were made.

We can explore the reasons why PG&E’s rates are so high, much of which is applicable to the other two utilities as well. Starting with generation costs, PG&E’s portfolio mismanagement is not explained away with a simple assertion that the utility bought when prices were higher. In fact, PG&E failed in several ways.

First, PG&E knew about the risk of customer exit as early as 2010 as revealed during the PCIA rulemaking hearings in 2018. PG&E continued to procure as though it would be serving its entire service area instead of planning for the rise of CCAs. Further PG&E also was told as early as 2010 (in my GRC testimony) that it was consistently forecasting too high, but it didn’t bother to correct thee error. Instead, service area load is basically at the save level that it was a decade ago.

Second, PG&E could have procured in stages rather than in two large rounds of request for offers (RFOs) which it finished by 2013. By 2011 PG&E should have realized that solar costs were dropping quickly (if they had read the CEC Cost of Generation Report that I managed) and that it should have rolled out the RFOs in a manner to take advantage of that improvement. Further, they could have signed PPAs for the minimum period under state law of 10 years rather than the industry standard 30 years. PG&E was managing its portfolio in the standard practice manner which was foolish in the face of what was occurring.

Third, PG&E failed to offer part of its portfolio for sale to CCAs as they departed until 2018. Instead, PG&E could have unloaded its expensive portfolio in stages starting in 2010. The ease of the recent RPS sales illustrates that PG&E’s claims about creditworthiness and other problems had no foundation.

I calculated the what the cost of PG&E’s mismanagement has been here. While SCE and SDG&E have not faced the same degree of exit by CCAs, the same basic problems exist in their portfolios.

Another factor for PG&E is the fact that ratepayers have paid twice for Diablo Canyon. I explain here how PG&E fully recovered its initial investment costs by 1998, but as part of restructuring got to roll most of its costs back into rates. Fortunately these units retire by 2025 and rates will go down substantially as a result.

In distribution costs, both PG&E and SCE requested over $2 billion for “new growth” in each of its GRCs since 2009, despite my testimony showing that growth was not going to materialize, and did not materialize. If the growth was arising from the addition of new developments, the developers and new customers should have been paying for those additions through the line extension rules that assign that cost responsibility. The utilities’ distribution planning process is opaque. When asked for the workpapers underlying the planning process, both PG&E and SCE responded that the entirety were contained in the Word tables in each of their testimonies. The growth projections had not been reconciled with the system load forecasts until this latest GRC, so the totals of the individual planning units exceeded the projected total system growth (which was too high as well when compared to both other internal growth projections and realized growth). The result is a gross overinvestment in distribution infrastructure with substantial overcapacity in many places.

For transmission, the true incremental cost has not been fully reported which means that other cost-effective solutions, including smaller and closer renewables, have been ignored. Transmission rates have more than doubled over the last decade as a result.

The Next10 report does not appear to reflect the full value of public purpose program spending on energy efficiency, in large part because it uses a short-run estimate of marginal costs. The report similarly underestimates the value of behind-the-meter solar rooftops as well. The correct method for both is to use the market value of deferred resources–generation, transmission and distribution–when those resources were added. So for example, a solar rooftop installed in 2013 was displacing utility scale renewables that cost more than $100 per megawatt-hour. These should not be compared to the current market value of less than $60 per megawatt-hour because that investment was not made on a speculative basis–it was a contract based on embedded utility costs.

How to increase renewables? Change the PCIA

California is pushing for an increase in renewable generation to power its electrification of buildings and the transportation sector. Yet the state maintains a policy that will impede reaching that goal–the power cost indifference adjustment (PCIA) rate discourages the rapidly growing community choice aggregators (CCAs) from investing directly in new renewable generation.

As I wrote recently, California’s PCIA rate charged as an exit fee on departed customers is distorting the electricity markets in a way that increases the risk of another energy crisis similar to the debacle in 2000 to 2001. An analysis of the California Independent System Operator markets shows that market manipulations similar to those that created that crisis likely led to the rolling blackouts last August. Unfortunately, the state’s energy agencies have chosen to look elsewhere for causes.

The even bigger problem of reaching clean energy goals is created by the current structure of the PCIA. The PCIA varies inversely with the market prices in the market–as market prices rise, the PCIA charged to CCAs and direct access (DA) customers decreases. For these customers, their overall retail rate is largely hedged against variation and risk through this inverse relationship.

The portfolios of the incumbent utilities, i.e., Pacific Gas and Electric, Southern California Edison and San Diego Gas and Electric, are dominated by long-term contracts with renewables and capital-intensive utility-owned generation. For example, PG&E is paying a risk premium of nearly 2 cents per kilowatt-hour for its investment in these resources. These portfolios are largely impervious to market price swings now, but at a significant cost. The PCIA passes along this hedge through the PCIA to CCAs and DA customers which discourages those latter customers from making their own long term investments. (I wrote earlier about how this mechanism discouraged investment in new capacity for reliability purposes to provide resource adequacy.)

The legacy utilities are not in a position to acquire new renewables–they are forecasting falling loads and decreasing customers as CCAs grow. So the state cannot look to those utilities to meet California’s ambitious goals–it must incentivize CCAs with that task. The CCAs are already game, with many of them offering much more aggressive “green power” options to their customers than PG&E, SCE or SDG&E.

But CCAs place themselves at greater financial risk under the current rules if they sign more long-term contracts. If market prices fall, they must bear the risk of overpaying for both the legacy utility’s portfolio and their own.

The best solution is to offer CCAs the opportunity to make a fixed or lump sum exit fee payment based on the market value of the legacy utility’s portfolio at the moment of departure. This would untie the PCIA from variations in the future market prices and CCAs would then be constructing a portfolio that hedges their own risks rather than relying on the implicit hedge embedded in the legacy utility’s portfolio. The legacy utilities also would have to manage their bundled customers’ portfolio without relying on the cross subsidy from departed customers to mitigate that risk.

PG&E has cost California over $3 billion by mismanaging its RPS portfolio

CCA Savings

When community choice aggregators take up serving PG&E customers, PG&E saves the cost of having to procure power for the departed load. Instead the CCAs bear that cost for that power. The savings to PG&E’s bundled customers are not fully reflected when calculating the exit fee (known as the power charge indifference adjustment or PCIA) for those CCAs. As a result, the exit fee does not reflect the true value that CCAs provide to PG&E and its bundled customers.

The chart above shows the realized and potential savings to PG&E from the departure of CCA customers. The realized part is the avoided costs of procuring resources to meet that load, shown in yellow. The second part is the foregone sales opportunity if PG&E had sold a portion of its portfolio to the CCAs at the going price when they departed. In 2019, these combined savings could have reached $3.2 billion if PG&E had acted prudently.

Many local governments launched CCAs to address their climate goals, and CCAs issued multiple requests for offers of RPS energy.  However, PG&E failed to respond to this opportunity to sell excess renewable energy no longer needed to serve their customers.  By deciding to hold these unneeded resources in a declining market, PG&E accumulated additional losses every year.  Indeed, the assigned Judge on the exit-fee proceeding at the CPUC concluded that PG&E must benefit from “holding back the RECs [renewable energy credits] for some reason.”

This willingness to hold onto an unneeded resource that loses value every year is contrary to prudent management.  However, shareholders, are shielded entirely from contract that are too costly, and only pay penalties for failing to meet RPS targets.  Instead, ratepayers—both bundled and CCA—pay all of the excessive costs, and shareholders only have a strong incentive to over-procure using those ratepayer dollars to avoid any possibility of reduced shareholder profits.  Holding these contracts also inflates the exit-fee departed customers must pay, making it harder for alternatives like public power and distributed generation to PG&E to thrive.

When Sonoma Clean Power launched in 2014, the average price of RPS energy was $128/MWh.  It has declined every year, and now sits at $57/MWh.  PG&E’s decision to not sell excess energy at 2014 prices, and to protect shareholders at the expense of ratepayers has cost customers over $3 billion dollars in the last 6 years as shown in the green columns below.  As RPS prices continue to decline, and the amount of customer departing increases, this figure will continue to increase every year.  Indeed, it surpassed $1.1 billion for 2019 alone.

PGAE Mismanagement Costs

Further, the hedging value of the RPS resources that PG&E listed as key attribute of holding these PPAs instead of disposing of them has diminished dramatically since PG&E pushed that as its strategy in its 2014 Bundled Procurement Plan. As shown in the chart above, the hedge value fell $1.3 billion from 2014 to 2019, from a high of $961 million to a burden of $343 million. PG&E’s hedge now adds $33/MWH to the cost of its renewables portfolio.

In comparison, Southern California Edison’s renewables portfolio costs just under $20/MWH less than PG&E’s. SCE did not rush into signing PPAs like PG&E and did not sign them for as long of terms as PG&E.


U. of Chicago misses mark on evaluating RPS costs


The U. of Chicago just released a working paper “Do Renewable Portfolio Standards Deliver?” that purports to assess the added costs of renewable portfolio standards adopted by states. The paper has two obvious problems that make the results largely useless for policy development purposes.

First, it’s entirely retrospective and then tries to make conclusions about future actions. The paper ignores that the high initial costs for renewables was driven down by a combination of RPS and other policies (e.g. net energy metering or NEM), and on a going forward basis, the renewables are now cost competitive with conventional resources. As a result, the going forward cost of GHG reductions is much smaller than the historic costs. In fact, the much more interesting question is “what would be the average cost of GHG reductions by moving from the current low penetration rate of renewables to substantially higher levels across the entire U.S., e.g., 50%, 60% etc. to 100%?” The high initial investment costs are then highly diluted by the now cost effective renewables.

Second, the abstract makes this bizarre statement “(t)hese cost estimates significantly exceed the marginal operational costs of renewables and likely reflect costs that renewables impose on the generation system…” Um, the marginal “operational” costs of renewables generally is pretty damn close to zero! Are the authors trying to make the bizarre claim (that I’ve addressed previously) that renewables should be priced at their “marginal operational costs”? This seems to reflect an remarkable naivete on the part of the authors. Based on this incorrect attribution, the authors cannot make any assumptions about what might be causing the rate difference.

Further, the authors appear to attribute the entire difference in rates to imposing an RPS standard. The fact is that these 29 states generally have also been much more active in other efforts to promote renewables, including for customers through NEM and DER rates, and to reduce demand. All of these efforts reduce load, which means that fixed costs are spread over a fewer amount of kilowatt-hours, which then causes rates to rise. The real comparison should be the differences in annual customer bills after accounting for changes in annual demand.

The authors also try to assign stranded cost recovery as a cost of GHG recovery. This is a questionable assignment since these are sunk costs which economists typically ignore. If we are to account for lost investment due to obsolescence of an older technology, economists are going to have go back and redo a whole lot of benefit-cost analyses! The authors would have to explain the special treatment of these costs.

Why do economists keep producing these papers in which they assume the world is static and that the future will be just like the past, even when the evidence of a rapidly changing scene is embedded in the data they are using?

The Business Roundtable takes the wrong lesson from California’s energy costs


The California Business Roundtable authored an article in the San Francisco Chronicle claiming that the we only need to look to California’s energy prices to see what would happen with the “Green New Deal” proposed by the Congressional Democrats.

That article has several errors and is misleading in others aspects. First, California’s electricity rates are high because of the renewable contracts signed nearly a decade ago when renewables were just evolving and much higher cost. California’s investment was part of the reason that solar and wind costs are now lower than existing coals plants (new study shows 75% of coal plants are uneconomic) and competitive with natural gas. Batteries that increase renewable operations have almost become cost effective. It also claims that reliability has “gone down” when in fact we still have a large reserve margin. The California Independent System Operator in fact found a 23% reserve margin when the target is only 17%. We also have the ability to install batteries quickly to solve that issue. PG&E is installing over 500 MW of batteries right now to replace a large natural gas plant.

For the rest of the U.S., consumers will benefit from these lower costs today. Californians have paid too much for their power to date, due to mismanagement by PG&E and the other utilities, but elsewhere will be able to avoid these foibles.

(Graphic: BNEF)

Charging with the sun…really!


Severin Borenstein at the University of California’s Energy Institute at Haas posted on whether a consumer buying an electric vehicle was charging it with power from renewables. I have been considering the issue of how our short-run electricity markets are incomplete and misleading. I posted this response on that blog:

As with many arguments that look quite cohesive, it is based on key unstated premises that if called into question undermine the conclusions. I would relabel the “correct” perspective as the “conventional” which assumes that the resources at the margin are defined by short-run operational decisions. This is the basic premise of the FERC-designed power market framework–somehow all of those small marginal energy increases eventually add up into one large new powerplant. This is the standard economic assumption that a series of “putty” transactions in the short term will evolve into a long term “clay” investment. (It’s all of those calculus assumptions about continuity that drive this.) This was questionable in 1998 as it became apparent that the capacity market would have to run separately from the energy market, and is now even more questionable as we replace fossil fuel with renewables.

I would call the fourth perspective as “dynamic”. From this perspective these short run marginal purchases on the CAISO are for balancing to meet current demand. As Marc Joseph pointed out, all of the new incremental demand is being met in a completely separate market that only uses the CAISO as a form of a day to day clearinghouse–the bilateral PPAs. No load serving entity is looking to the CAISO as their backstop resource source. Those long term PPAs are almost universally renewables–even in states without RPS standards. In addition, fossil fueled plants–coal and gas–are being retired and replaced by solar and wind, and that is an additional marginal resource not captured in the CAISO market.

So when a consumer buys a new EV, that added load is being met with renewables added to either meet new load or replace retired fossil. Because these renewables have zero operating costs, they don’t show up in the CAISO’s “marginal” resources for simple accounting reasons, not for fundamental economic reasons. And when that consumer also adds solar panels at the same time, those panels don’t show up at all in the CAISO transactions and are ignored under the conventional view.

There is an issue of resource balancing costs in the CAISO incurred by one type of resource versus another, but that cost is only a subcomponent of the overall true marginal cost from a dynamic perspective.

So how we view the difference between “putty” and “clay” increments is key to assessing whether a consumer is charging their EV with renewables or not.

Study shows RPS spillover positive to other states


A study in the Journal of the Association of Environmental and Resource Economics entitled “External Impacts of Local Energy Policy: The Case of Renewable Portfolio Standards” finds that increasing the renewable portfolio standard (RPS) in one state reduces coal generation in neighboring states through trading of renewable energy credits (RECs). This contrasts with findings on greenhouse gas emission “leakage” under California’s cap and trade program put forth by the authors at the Energy Institute at Haas at the University of California here and here.

These latter set of findings has been used California Public Utilities Commissioners to argue against the use of RECs and implication that community choice aggregators (CCAs) are not moving forward increased renewables generation. This new study appears to land on the side of the CCAs which have argued that even relying on RECs in the short run have a positive effect reducing GHG emissions in the West.

Why the CPUC has it wrong on the PCIA

Nick Chaset is the CEO of East Bay Community Energy which is a community choice aggregator (CCA) that serves Alameda County. He also was Commission President Michael Picker’s chief advisor until last year when he left for EBCE. He explains in this article how two proposed decisions that the CPUC is considering are fundamentally wrong and will shift cost onto CCA customers. (I testified on behalf of CalCCA in this proceeding. I’ll have more on this before the Commission’s scheduled vote October 11.)

Figure 1 – CPUC’s Proposed Resource Adequacy Value vs. True Market Values


Figure 2 – GHG Premium Value Missing from CPUC Proposed Decision


Figure 3 – Falling Utility Rates as Customers Depart Filed in Their ERRA Rate Applications



Another bad legislative idea: Pushing RPS purchase


The California Legislature is considering a bill (AB 893) that would require the state’s regulated utilities (including CCAs as well as investor-owned) to buy at least 4,250 megawatts of renewables before federal tax credits expire in 2022.

Unfortunately, this will not create the cost savings that seem so obvious. This argument was made by the renewable energy plant owners in the Diablo Canyon Power Plant retirement case (A.16-08-006) and rejected by the CPUC in its decision. While the tax credits lower current costs, these are more than offset by waiting for technology costs to fall even further, as shown by the solar power forecast above. Combined with the time value of money (discounting), the value of waiting far outweighs prematurely buying renewables.

The legislature already passed a bill (SB 1090) that requires the CPUC to ensure that GHG emissions will not rise when Diablo Canyon retires in 2024 and 2025 when approving integrated resource plans. (Whether the governor signs this overly directive law is another question.) And SB 100 requires reaching 100% carbon free by 2045. A study just released by the Energy Institute at Haas indicates that renewables to date have depressed energy market prices, discouraging further investment. And the CAISO is “managing oversupply” created by the current renewable generation.

And there’s a further problem–with a large number of customers moving from the IOUs to CCAs across all three utilities, the question is “who should be responsible for buying this power?” The CCAs will have their own preferences (often locally and community-scale) that will conflict with any choices made by the IOUs. The CCAs are already saddled with poor procurement and portfolio management decisions by the IOUs through exit fees. (PG&E has an embedded risk premium of $33 per megawatt-hour in its RPS portfolio costs.) Why would we want the IOUs to continue to mismanage our power resources?

Repost: CAISO notches record, serving 56.7% of demand with renewable energy in one day | Utility Dive

Solar and wind power combined also hit a peak on the same day by serving 49.2% of demand.

Source: CAISO notches record, serving 56.7% of demand with renewable energy in one day | Utility Dive