Tag Archives: renewables

PG&E has cost California over $3 billion by mismanaging its RPS portfolio

CCA Savings

When community choice aggregators take up serving PG&E customers, PG&E saves the cost of having to procure power for the departed load. Instead the CCAs bear that cost for that power. The savings to PG&E’s bundled customers are not fully reflected when calculating the exit fee (known as the power charge indifference adjustment or PCIA) for those CCAs. As a result, the exit fee does not reflect the true value that CCAs provide to PG&E and its bundled customers.

The chart above shows the realized and potential savings to PG&E from the departure of CCA customers. The realized part is the avoided costs of procuring resources to meet that load, shown in yellow. The second part is the foregone sales opportunity if PG&E had sold a portion of its portfolio to the CCAs at the going price when they departed. In 2019, these combined savings could have reached $3.2 billion if PG&E had acted prudently.

Many local governments launched CCAs to address their climate goals, and CCAs issued multiple requests for offers of RPS energy.  However, PG&E failed to respond to this opportunity to sell excess renewable energy no longer needed to serve their customers.  By deciding to hold these unneeded resources in a declining market, PG&E accumulated additional losses every year.  Indeed, the assigned Judge on the exit-fee proceeding at the CPUC concluded that PG&E must benefit from “holding back the RECs [renewable energy credits] for some reason.”

This willingness to hold onto an unneeded resource that loses value every year is contrary to prudent management.  However, shareholders, are shielded entirely from contract that are too costly, and only pay penalties for failing to meet RPS targets.  Instead, ratepayers—both bundled and CCA—pay all of the excessive costs, and shareholders only have a strong incentive to over-procure using those ratepayer dollars to avoid any possibility of reduced shareholder profits.  Holding these contracts also inflates the exit-fee departed customers must pay, making it harder for alternatives like public power and distributed generation to PG&E to thrive.

When Sonoma Clean Power launched in 2014, the average price of RPS energy was $128/MWh.  It has declined every year, and now sits at $57/MWh.  PG&E’s decision to not sell excess energy at 2014 prices, and to protect shareholders at the expense of ratepayers has cost customers over $3 billion dollars in the last 6 years as shown in the green columns below.  As RPS prices continue to decline, and the amount of customer departing increases, this figure will continue to increase every year.  Indeed, it surpassed $1.1 billion for 2019 alone.

PGAE Mismanagement Costs

Further, the hedging value of the RPS resources that PG&E listed as key attribute of holding these PPAs instead of disposing of them has diminished dramatically since PG&E pushed that as its strategy in its 2014 Bundled Procurement Plan. As shown in the chart above, the hedge value fell $1.3 billion from 2014 to 2019, from a high of $961 million to a burden of $343 million. PG&E’s hedge now adds $33/MWH to the cost of its renewables portfolio.

In comparison, Southern California Edison’s renewables portfolio costs just under $20/MWH less than PG&E’s. SCE did not rush into signing PPAs like PG&E and did not sign them for as long of terms as PG&E.

 

PG&E apologizes, yet again

5610400_101019-kgo-pge-ceo-bill-johnson-img_image_23-04-2516

(Image: ABC 7 News)

I listened to PG&E’s CEO Bill Johnson and his staff apologize for its mishandling of the public safety power shutoffs (PSPS) that affected over 700,000 “customers” (what other industry calls meters “customers”?) yesterday. And as I listened, I thought of the many times that PG&E has fumbled (or even acted maliciously) over the years. Here’s my partial list (and I’m leaving out the faux pas that I’ve experienced in regulatory proceedings):

  • Failing to turn off power locally in 2017 and 2018 under hazardous weather conditions, which led to the Wine Country and Camp fires.
  • Failing to install distribution shut off equipment that was installed by San Diego Gas & Electric and Southern California Edison after the 2007 wildfires in Southern  California.
  • Signing too many power purchase agreements with renewables in the 2009 to 2014 period that were for too long of terms (e.g., 20 years instead of 10 years). PG&E is unable to take advantage of the dramatic cost decreases created by California’s bold investments. For a comparison, PG&E’s renewable portfolio costs about 20% more than SCE’s. (I am one of a few that has access to the confidential portfolio data for both utilities.)
  • Failing to act on the opportunity to sell part of its overstuffed renewable portfolio to the CCAs that emerged from 2010 to 2016. Those sales could have benefited everyone by decreasing PG&E’s obligations and providing the CCAs with existing firm resources. That opportunity has now largely passed.
  • The gas pipeline explosion in San Bruno in 2010 caused by PG&E’s failure to keep proper records for decades. PG&E was convicted of a felony for its negligence.
  • Overinvesting in obsolete distribution infrastructure after 2009 by failing to recognize that electricity demand had flattened and that customers were switching en masse to solar rooftops. (I repeatedly filed testimony starting in 2010 pointing out this error.)
  • Deploying an Advanced Meter Infrastructure (AMI) system starting in 2004 using SmartMeters that claimed that it would provide much more control of PG&E’s distribution system, and deliver positive benefits to ratepayers. Savings have largely failed to materialize, and PG&E’s inability to use its AMI to more narrowly target its PSPS illustrates how AMI has failed to deliver.
  • Acquiring and building three unneeded natural gas plants starting in 2006. Several merchant-owned plants constructed in the early 2000s are already on the verge of retiring because of the flattening in demand.
  • Failing to act in May 2000 to end the “competitive transition” period of California’s restructuring by agreeing to the market valuation of its hydropower system.
  • If PG&E had ended the transition period, it would have been immediately free to sign longer term contracts with merchant generators, thereby taking away the incentive for those generators to manipulate the market. The subsequent energy crisis most likely would have not occurred, or been much more isolated to Southern California.
  • PG&E’s CEO in 1998 made a speech to the shareholders stating that it was PG&E’s intent to extend the transition period as far as possible, to March 2001 at least. (We cited this speech from a transcript in the 1999 GRC case.)
  • Offering rebuttal in the 1999 GRC that instead confirmed the ORA’s analysis that the optimal size of a utility is closer to 500,000 customers rather than 4 million plus. Commissioner Bilas wrote a draft decision confirming this finding, but restructuring derailed the vote on the case.
  • Being caught by the CPUC in diverting $495 million from maintenance spending to shareholders from 1992 to 1997. PG&E was fined $29 million.
  • Forcing the CPUC in 1996 to adopt the “competitive transition charge” which was tied to the fluctuating CAISO day-ahead market price instead of using Commissioner Knight’s up front pay out for stranded assets. The CTC led to the “transition period” which facilitated the ability of merchant generators to manipulate the market price.
  • Two settlement agreements allow PG&E to fully recover its costs in Diablo Canyon by January 1, 1998 based on its authorized rate of return from 1986 to 1998, but also allows it to put into ratebase about half of its “remaining” construction costs as a prelude to restructuring.
  • Getting caught in 1990 telling FERC that PG&E was short resources and needed to build more, while telling the CPUC that it had a long term surplus and that it needed to curtail its payments to third-party qualifying facilities (QF) generators.
  • In the early 1980s, failing to set up a rationale process for signing QF contracts that limited the addition of these resources. In addition, PG&E missed an important pricing calculation mistake in the capacity payment term that led to a double payment to QFs.
  • In the 1970s, making many construction management mistakes when building the Diablo Canyon nuclear power plant, including reversing the blueprints, that led to the costs rising from $315 million to over $5 billion. (And Diablo Canyon in 3 of the last 5 years has operated at a loss and should not have been generating for several months each of those years.)
  • In the 1960s, signing an agreement with Sacramento Municipal Utility District (SMUD) to finance the construction of the Rancho Seco nuclear plant that essentially gave SMUD free energy when Rancho Seco wasn’t generating. The result was the mismanagement of the plant, which was so damaged that it was closed in 1989 (in part as a result of analysis conducted by the consulting team that I was on.)

The other two California IOUs are guilty of some of these same errors, and SMUD and Los Angeles Department of Water and Power (LADWP) also do not have a clean bill of health, but the quantities and magnitudes to don’t match those of PG&E.

Upfront solar subsidy more cost effective than per kilowatt-hour

Solar_panels_on_house_roof_winter_view

This paper from the American Economic Review found that consumers use a discount rate in excess of 15% in valuing residential solar power credits, compared to a social-wide discount rate of 3%.  The implication is that a government can incent the same amount of solar investment through an upfront credit for as little as half the cost of a per kilowatt-hour ongoing subsidy.

The California Solar Initiative had two different incentive methods, the Performance Based Incentive (PBI) which was paid out over 5 years and the Expected Performance-Based Buydowns (EPBB) paid out upfront. The former was preferred by policy makers but the latter was more popular with homeowners. Now we know the degree of difference in the preference.

U. of Chicago misses mark on evaluating RPS costs

08_us_net_electricity_generation_by_fuel_source_1080_604_80

The U. of Chicago just released a working paper “Do Renewable Portfolio Standards Deliver?” that purports to assess the added costs of renewable portfolio standards adopted by states. The paper has two obvious problems that make the results largely useless for policy development purposes.

First, it’s entirely retrospective and then tries to make conclusions about future actions. The paper ignores that the high initial costs for renewables was driven down by a combination of RPS and other policies (e.g. net energy metering or NEM), and on a going forward basis, the renewables are now cost competitive with conventional resources. As a result, the going forward cost of GHG reductions is much smaller than the historic costs. In fact, the much more interesting question is “what would be the average cost of GHG reductions by moving from the current low penetration rate of renewables to substantially higher levels across the entire U.S., e.g., 50%, 60% etc. to 100%?” The high initial investment costs are then highly diluted by the now cost effective renewables.

Second, the abstract makes this bizarre statement “(t)hese cost estimates significantly exceed the marginal operational costs of renewables and likely reflect costs that renewables impose on the generation system…” Um, the marginal “operational” costs of renewables generally is pretty damn close to zero! Are the authors trying to make the bizarre claim (that I’ve addressed previously) that renewables should be priced at their “marginal operational costs”? This seems to reflect an remarkable naivete on the part of the authors. Based on this incorrect attribution, the authors cannot make any assumptions about what might be causing the rate difference.

Further, the authors appear to attribute the entire difference in rates to imposing an RPS standard. The fact is that these 29 states generally have also been much more active in other efforts to promote renewables, including for customers through NEM and DER rates, and to reduce demand. All of these efforts reduce load, which means that fixed costs are spread over a fewer amount of kilowatt-hours, which then causes rates to rise. The real comparison should be the differences in annual customer bills after accounting for changes in annual demand.

The authors also try to assign stranded cost recovery as a cost of GHG recovery. This is a questionable assignment since these are sunk costs which economists typically ignore. If we are to account for lost investment due to obsolescence of an older technology, economists are going to have go back and redo a whole lot of benefit-cost analyses! The authors would have to explain the special treatment of these costs.

Why do economists keep producing these papers in which they assume the world is static and that the future will be just like the past, even when the evidence of a rapidly changing scene is embedded in the data they are using?

Moving beyond the easy stuff: Mandates or pricing carbon?

figure-1

Meredith Fowlie at the Energy Institute at Haas posted a thought provoking (for economists) blog on whether economists should continue promoting pricing carbon emissions.

I see, however, that this question should be answered in the context of an evolving regulatory and technological process.

Originally, I argued for a broader role for cap & trade in the 2008 CARB AB32 Scoping Plan on behalf of EDF. Since then, I’ve come to believe that a carbon tax is probably preferable over cap & trade when we turn to economy wide strategies for administrative reasons. (California’s CATP is burdensome and loophole ridden.) That said, one of my prime objections at the time to the Scoping Plan was the high expense of mandated measures, and that it left the most expensive tasks to be solved by “the market” without giving the market the opportunity to gain the more efficient reductions.

Fast forward to today, and we face an interesting situation because the cost of renewables and supporting technologies have plummeted. It is possible that within the next five years solar, wind and storage will be less expensive than new fossil generation. (The rest of the nation is benefiting from California initial, if mismanaged, investment.) That makes the effective carbon price negative in the electricity sector. In this situation, I view RPS mandates as correcting a market failure where short term and long term prices do not and cannot converge due to a combination of capital investment requirements and regulatory interventions. The mandates will accelerate the retirement of fossil generation that is not being retired currently due to mispricing in the market. As it is, many areas of the country are on their way to nearly 100% renewable (or GHG-free) by 2040 or earlier.

But this and other mandates to date have not been consumer-facing. Renewables are filtered through the electric utility. Building and vehicle efficiency standards are imposed only on new products and the price changes get lost in all of the other features. Other measures are focused on industry-specific technologies and practices. The direct costs are all well hidden and consumers generally haven’t yet been asked to change their behavior or substantially change what they buy.

But that all would seem to change if we are to take the next step of gaining the much deeper GHG reductions that are required to achieve the more ambitious goals. Consumers will be asked to get out of their gas-fueled cars and choose either EVs or other transportation alternatives. And even more importantly, the heating, cooling, water heating and cooking in the existing building stock will have to be changed out and electrified. (Even the most optimistic forecasts for biogas supplies are only 40% of current fossil gas use.) Consumers will be presented more directly with the costs for those measures. Will they prefer to be told to take specific actions, to receive subsidies in return for higher taxes, or to be given more choice in return for higher direct energy use prices?

The Business Roundtable takes the wrong lesson from California’s energy costs

solar-panel-price-drop-global-solar-installations-bnef

The California Business Roundtable authored an article in the San Francisco Chronicle claiming that the we only need to look to California’s energy prices to see what would happen with the “Green New Deal” proposed by the Congressional Democrats.

That article has several errors and is misleading in others aspects. First, California’s electricity rates are high because of the renewable contracts signed nearly a decade ago when renewables were just evolving and much higher cost. California’s investment was part of the reason that solar and wind costs are now lower than existing coals plants (new study shows 75% of coal plants are uneconomic) and competitive with natural gas. Batteries that increase renewable operations have almost become cost effective. It also claims that reliability has “gone down” when in fact we still have a large reserve margin. The California Independent System Operator in fact found a 23% reserve margin when the target is only 17%. We also have the ability to install batteries quickly to solve that issue. PG&E is installing over 500 MW of batteries right now to replace a large natural gas plant.

For the rest of the U.S., consumers will benefit from these lower costs today. Californians have paid too much for their power to date, due to mismanagement by PG&E and the other utilities, but elsewhere will be able to avoid these foibles.

(Graphic: BNEF)

Charging with the sun…really!

MITSUBISHI MOTOR SALES OF AMERICA, INC. CYPRESS CHARGING STATION

Severin Borenstein at the University of California’s Energy Institute at Haas posted on whether a consumer buying an electric vehicle was charging it with power from renewables. I have been considering the issue of how our short-run electricity markets are incomplete and misleading. I posted this response on that blog:

As with many arguments that look quite cohesive, it is based on key unstated premises that if called into question undermine the conclusions. I would relabel the “correct” perspective as the “conventional” which assumes that the resources at the margin are defined by short-run operational decisions. This is the basic premise of the FERC-designed power market framework–somehow all of those small marginal energy increases eventually add up into one large new powerplant. This is the standard economic assumption that a series of “putty” transactions in the short term will evolve into a long term “clay” investment. (It’s all of those calculus assumptions about continuity that drive this.) This was questionable in 1998 as it became apparent that the capacity market would have to run separately from the energy market, and is now even more questionable as we replace fossil fuel with renewables.

I would call the fourth perspective as “dynamic”. From this perspective these short run marginal purchases on the CAISO are for balancing to meet current demand. As Marc Joseph pointed out, all of the new incremental demand is being met in a completely separate market that only uses the CAISO as a form of a day to day clearinghouse–the bilateral PPAs. No load serving entity is looking to the CAISO as their backstop resource source. Those long term PPAs are almost universally renewables–even in states without RPS standards. In addition, fossil fueled plants–coal and gas–are being retired and replaced by solar and wind, and that is an additional marginal resource not captured in the CAISO market.

So when a consumer buys a new EV, that added load is being met with renewables added to either meet new load or replace retired fossil. Because these renewables have zero operating costs, they don’t show up in the CAISO’s “marginal” resources for simple accounting reasons, not for fundamental economic reasons. And when that consumer also adds solar panels at the same time, those panels don’t show up at all in the CAISO transactions and are ignored under the conventional view.

There is an issue of resource balancing costs in the CAISO incurred by one type of resource versus another, but that cost is only a subcomponent of the overall true marginal cost from a dynamic perspective.

So how we view the difference between “putty” and “clay” increments is key to assessing whether a consumer is charging their EV with renewables or not.