Tag Archives: renewables

Obstacles to nuclear power, but how much do we really need it?

Jonathan Rauch writes in the Atlantic Monthly about the innovations in nuclear power technology that might overcome its troubled history. He correctly identifies the core of the problem for nuclear power, although it extends even further than he acknowledges. Recent revelations about the fragility of France’s once-vaunted nuclear fleet illustrates deeper management problems with the technology. Unfortunately he is too dismissive of the safety issues and even the hazardous duties that recovery crews experienced at both Chernobyl and Fukushima. Both of those accidents cost those nations hundreds of billions of dollars. As a result of these issues, nuclear power around the world now costs over 10 cents per kilowatt-hour. Grid-scale solar and wind power in contrast costs less than four cents and even adding storage no more than doubles that cost. And this ignores the competition of small-scale distributed energy resources (DER) that could break the utility monopoly required to pay for nuclear power.

Yet Rauch’s biggest error is in asserting without sufficient evidence that nuclear power is required to achieve greenhouse gas emission reductions. Numerous studies (including for California) show that we can get to a 90% emission free and beyond power grid with current technologies and no nuclear. We have two decades to figure out how to get to the last 10% or less, or to determine if we even need to.

The problem with the new nuclear technologies such as small modular reactors (SMR) is that they must be built on a wide scale as a high proportion of the power supply to achieve the technological cost reductions of the type that we have seen for solar and batteries. And to get a low enough cost per kilowatt-hour, those units must run constantly in baseload mode, which only exacerbates the variable output issue for renewables instead of solving it. Running in a load following mode will increase the cost per kilowatt-hour by 50%.

We should continue research in this technology because there may be a breakthrough that solves these dilemmas. But we should not plan on needing it to save our future. We have been disappointed too many times already by empty promises from this industry.

Paradigm change: building out the grid with renewables requires a different perspective

Several observers have asserted that we will require baseload generation, probably nuclear, to decarbonize the power grid. Their claim is that renewable generation isn’t reliable enough and too distant from load centers to power an electrified economy.

Problem is that this perspective relies on a conventional approach to understanding and planning for future power needs. That conventional approach generally planned to meet the highest peak loads of the year with a small margin and then used the excess capacity to produce the energy needed in the remainder of the hours. This premise was based on using consumable fuel to store energy for use in hours when electricity was needed.

Renewables such as solar and wind present a different paradigm. Renewables capture and convert energy to electricity as it becomes available. The next step is to stored that energy using technologies such as batteries. That means that the system needs to be built to meet energy requirements, not peak loads.

Hydropower-dominated systems have already been built in this manner. The Pacific Northwest’s complex on the Columbia River and its branches for half a century had so much excess peak capacity that it could meet much of California’s summer demand. Meeting energy loads during drought years was the challenge. The Columbia River system could store up to 40% of the annual runoff in its reservoirs to assure sufficient supply.

For solar and wind, we will build enough capacity that is multiples of the annual peak load so that we can generate enough energy to meet those loads that occur when the sun isn’t shining and wind isn’t blowing. For example in a system relying on solar power, the typical demand load factor is 60%, i.e., the average load is 60% of the peak or maximum load. A typical solar photovoltaic capacity factor is 20%, i.e., it generates an average output that is 20% of the peak output. In this example system, the required solar capacity would be three times the peak demand on the system to produce sufficient stored electricity. The amount of storage capacity would equal the peak demand (plus a small reserve margin) less the amount of expected renewable generation during the peak hour.

As a result, comparing the total amount of generation capacity installed to the peak demand becomes irrelevant. Instead we first plan for total energy need and then size the storage output to meet the peak demand. (And that storage may be virtually free as it is embodied in our EVs.) This turns the conventional planning paradigm on its head.

Do small modular reactors (SMR) hold real promise?

The economic analyses of the projected costs for small modular reactors (SMRs) appear to rely on two important assumptions: 1) that the plants will run at capacity factors of current nuclear plants (i.e., 70%-90%+) and 2) that enough will be built quickly enough to gain from “learning by doing” on scale as has occurred with solar, wind and battery technologies. The problem with these assumptions is that they require that SMRs crowd out other renewables with little impact on gas-fired generation.

To achieve low costs in nuclear power requires high capacity factors, that is the total electricity output relative to potential output. The Breakthrough Institute study, for example, assumes a capacity factor greater than 80% for SMRs. The problem is that the typical system load factor, that is the average load divided by the peak load, ranges from 50% to 60%. A generation capacity factor of 80% means that the plant is producing 20% more electricity than the system needs. It also means that other generation sources such as solar and wind will be pushed aside by this amount in the grid. Because the SMRs cannot ramp up and down to the same degree as load swings, not only daily but also seasonally, the system will still need load following fossil-fuel plants or storage. It is just the flip side of filling in for the intermittency of renewables.

To truly operate within the generation system in a manner that directly displaces fossil fuels, an SMR will have to operate at a 60% capacity factor or less. Accommodating renewables will lower that capacity factor further. Decreasing the capacity factor from 80% to 60% will increase the cost of an SMR by a third. This would increase the projected cost in the Breakthrough Institute report for 2050 from $41 per megawatt-hour to $55 per megawatt-hour. Renewables with storage are already beating this cost in 2022 and we don’t need to wait 30 years.

And the Breakthrough Institute study relies questionable assumptions about learning by doing in the industry. First, it assumes that conventional nuclear will experience a 5% learning benefit (i.e., costs will drop 5% for each doubling of capacity). In fact, the industry shows a negative learning rate--costs per kilowatt have been rising as more capacity is built. It is not clear how the SMR industry will reverse this trait. Second, the learning by doing effect in this industry is likely to be on a per plant rather than per megawatt or per turbine basis as has been the case with solar and turbines. The very small unit size for solar and turbine allows for off site factory production with highly repetitive assembly, whereas SMRs will require substantial on-site fabrication that will be site specific. SMR learning rates are more likely to follow those for building construction than other new energy technologies.

Finally, the report does not discuss the risk of catastrophic accidents. The probability of a significant accident is about 1 per 3,700 reactor operating years. Widespread deployment of SMRs will vastly increase the annual risk because that probability is independent of plant size. Building 1,000 SMRs could increase the risk to such a level that these accidents could be happening once every four years.

The Fukushima nuclear plant catastrophe is estimated to have cost $300 billion to $700 billion. The next one could cost in excess of $1 trillion. This risk adds a cost of $11 to $27 per megawatt-hours.

Adding these risk costs on top of the adjusted capacity factor, the cost ranges rises to $65 to $82 per megawatt-hour.

Close Diablo Canyon? More distributed solar instead

More calls for keeping Diablo Canyon have coming out in the last month, along with a proposal to match the project with a desalination project that would deliver water to somewhere. (And there has been pushback from opponents.) There are better solutions, as I have written about previously. Unfortunately, those who are now raising this issue missed the details and nuances of the debate in 2016 when the decision was made, and they are not well informed about Diablo’s situation.

One important fact is that it is not clear whether continued operation of Diablo is safe. Unit No. 1 has one of the most embrittled containment vessels in the U.S. that is at risk during a sudden shutdown event.

Another is that the decision would require overriding a State Water Resources Control Board decision that required ending the use of once-through cooling with ocean water. That cost was what led to the closure decision, which was 10 cents per kilowatt-hour at current operational levels and in excess of 12 cents in more likely operations.

So what could the state do fairly quickly for 12 cents per kWh instead? Install distributed energy resources focused on commercial and community-scale solar. These projects cost between 6 and 9 cents per kWh and avoid transmission costs of about 4 cents per kWh. They also can be paired with electric vehicles to store electricity and fuel the replacement of gasoline cars. Microgrids can mitigate wildfire risk more cost effectively than undergrounding, so we can save another $40 billion there too. Most importantly they can be built in a matter of months, much more quickly than grid-scale projects.

As for the proposal to build a desalination plant, pairing one with Diablo would both be overkill and a logistical puzzle. The Carlsbad plant produces 56,000 acre-feet annually for San Diego County Water Agency. The Central Coast where Diablo is located has a State Water Project allocation of 45,000 acre-feet which is not even used fully now. That plant uses 35 MW or 1.6% of Diablo’s output. A plant built to use all of Diablo’s output could produce 3.5 million acre-feet, but the State Water Project would need to be significantly modified to move the water either back to the Central Valley or beyond Santa Barbara to Ventura. All of that adds up to a large cost on top of what is already a costly source of water of $2,500 to $2,800 per acre-foot.

What rooftop solar owners understand isn’t mythological

Severin Borenstein wrote another blog attacking rooftop solar (a pet peeve of his at least a decade because these weren’t being installed in “optimal” locations in the state) entitled “Myths that Solar Owners Tell Themselves.” Unfortunately he set up a number of “strawman” arguments that really have little to do with the actual issues being debated right now at the CPUC. Here’s responses to each his “myths”:

Myth #1 – Customers are paid only 4 cents per kWh for exports: He’s right in part, but then he ignores the fact that almost all of the power sent out from rooftop panels are used by their neighbors and never gets to the main part of the grid. The utility is redirecting the power down the block.

Myth #2 – The utility sells the power purchased at retail back to other customers at retail so the net so it’s a wash: Borenstein’s claim ignores the fact that when the NEM program began the utilities were buying power that cost more than the retail rate at the time. During NEM 1.0 the IOUs were paying in excess of 10c/kwh for renewable power (RPS) power purchase agreements (PPAs). Add the 4c/kWh for transmission and that’s more than the average rate of 13c/kWh that prevailed during that time. NEM 2.0 added a correction for TOU pricing (that PG&E muffled by including only the marginal generation cost difference by TOU rather than scaling) and that adjusted the price some. But those NEM customers signed up not knowing what the future retail price would be. That’s the downside of failing to provide a fixed price contract tariff option for solar customers back then. So now the IOUs are bearing the consequences of yet another bad management decision because they were in denial about what was coming.

Myth #3 – Rooftop solar is about disrupting the industry: Here Borenstein appears to be unaware of the Market Street Railway case that states that utilities are not protected from technological change. Protecting companies from the consequences of market forces is corporate socialism. If we’re going to protect shareholders from risk (and its even 100% protection), then the grid should be publicly owned instead. Sam Insull set up the regulatory scam a century ago arguing that income assurance was needed for grid investment, and when the whole scheme collapsed in the Depression, the Public Utility Holding Company Act of 1935 (PUHCA)was passed. Shareholders need to pick their poison—either be exposed to risk or transfer their assets public ownership, but wealthy shareholders should not be protected.

Myth #3A – Utilities made bad investments and should bear the risks: Borenstein is arguing since the utilities have run the con for the last decade and gotten approval from the CPUC, they should be protected. Yet I submitted testimony repeatedly starting in 2010 both PG&E’s and SCE’s GRCs that warned that they had overforecasted load growth. I was correct—statewide retail sales are about the same today as they were in 2006. Grid investment would have been much different if those companies had listened and corrected their forecasts. Further the IOUs know how to manipulate their regulatory filings to ensure that they still get their internally targeted income. Decoupling that ensures that the utility receives its guaranteed income regardless of sales further shields them. From 1994 to 2017, PG&E hit its average allowed rate of return within 0.1%. (More on this later.) A UCB economics graduate student found that the return on equity is up to 4% too high (consistent with analysis I’ve done).

Myth #3B – Time to take away the utility’s monopoly: No, we no longer need to have monopoly electric service. The same was said about telecommunications three decades ago. Now we have multiple entities vying for our dollars. The CPUC conducted a study in 1999 that was included in PG&E’s GRC proposed decision (thanks to the late Richard Bilas) that showed that economies of scale disappeared after several hundred thousand customers (and that threshold is likely lower now.) And microgrids are becoming cost effective, especially as PG&E’s rates look like they will surpass 30 cents per kWh by 2026.

Myth #4 – There aren’t barriers to the poor putting panels on their roofs: First, the barriers are largely regulatory, not financial. The CPUC has erected them to prevent aggregation of low-income customers to be able to buy into larger projects that serve these communities.

Second, there are many market mechanisms today where those with lower income are offered products or services at a higher long term price in return for low or no upfront costs. Are we also going to heavily tax car purchases because car leasing is effectively more expensive? What about house ownership vs. rentals? There are issues to address with equity, but to zero in on one small example while ignoring the much wider prevalence sets  up another strawman argument.

Further, there are better ways to address the inequity in rooftop solar distribution. That inequity isn’t occurring duo to affordability but rather because of split incentives between landlords and tenants.

A much easier and more direct fix would be to modify Public Utilities Code Sections 218 to allow local sales among customers or by landlords or homeowner associations to tenants and 739.5 to allow more flexibility in pricing those sales. But allowing those changes will require that the utilities give up iron-fisted control of electricity production.

Myth #5 – Rooftop solar is the only thing that makes it cost-effective to electrify: Borenstein focuses on the what source of high rates. Rooftop solar might be raising rates, but it probably delivered as much in offsetting savings. At most those customers increased rates by 10%, but utility rates are 70-100% above the direct marginal costs of service. The sources of that difference are manifest. PG&E has filed in its 2023 GRC a projected increase in the average standard residential rate to 38 cents per kWh by 2026, and perhaps over 40 cents once undergrounding to mitigate wildfire is included. The NREL studies on microgrids show that individual home microgrids cost about 34 cents per kWh now and battery storage prices are still dropping. Exiting the grid starts to look a lot more attractive.

Maybe if we look only at the status quo as unchanging and accept all of the utilities’ claims about their “necessary” management decisions and the return required to attract investors, then these arguments might hold water. But none of these factors are true based on the empirical work presented in many forums including at the CPUC over the last decade. These beliefs are not so mythological.

Finally, Borenstein finishes with “(a)nd we all need to be open to changing our minds as a result of changing technology and new data.” Yet he has been particularly unyielding on this issue for years, and has not reexamined his own work on electricity markets from two decades ago. The meeting of open minds requires a two-way street.

A reply: two different ways California can keep the lights on amid climate change

Mike O’Boyle from Energy Innovation wrote an article in the San Francisco Chronicle listing four ways other than building more natural gas plants to maintain reliability in the state. He summarizes a set of solutions for when the electricity grid can get 85% of its supply from renewable sources, presumably in the next decade. He lists four options specifically:

  • Off shore wind
  • Geothermal
  • Demand response and management
  • Out of state imports

The first three make sense, although the amount of geothermal resources is fairly limited relative to the state’s needs. The problem is the fourth one.

California already imports about a fifth of its electric energy. If we want other states to also electrify their homes and cars, we need to allow them to use their own in-state resources. Further, the cost of importing power through transmission lines is much higher than conventional analyses have assumed. California is going to have to meet as much of its demands internally as possible.

Instead, we should be pursuing two other options:

  • Dispersed microgrids with provisions for conveying output among several or many customers who can share the system without utility interaction. Distributed solar has already reduced the state’s demand by 12% to 20% since 2006. This will require that the state modify its laws regulating transactions among customers and act to protect the investments of those customers against utility interests.
  • Replacing natural gas in existing power plants with renewable biogas. A UC Riverside study shows a potential of 68 billion cubic feet which is about 15% of current gas demand for electricity production. Instead of using this for home cooking, it can meet the limited peak day demands of the electricity grid.

Both of these solutions can be implemented much more quickly than an expanded transmission grid and building new resources in other states. They just take political will.

What “Electrify Everything” has wrong about “reduce, reuse, recycle”

Saul Griffith has written a book that highlights the role of electrification in achieving greenhouse gas emission reductions, and I agree with his basic premise. But he misses important aspects about two points. First, the need to reduce, reuse and recycle goes well beyond just energy consumption. And second, we have the ability to meet most if not all of our energy needs with the lowest impact renewable sources.

Reduce, reuse and recycle is not just about energy–it’s also about reducing consumption of natural resources such as minerals and biomass, as well as petroleum and methane used for plastics, and pollution caused by that consumption. In many situations, energy savings are only a byproduct. Even so, almost always the cheapest way to meet an energy need is to first reduce its use. That’s what energy efficiency is about. So we don’t want to just tell consumers to continue along their merry way, just switch it up with electricity. A quarter to a third our global GHG emissions are from resource consumption, not energy use.

In meeting our energy needs, we can largely rely on solar and wind supplemented with biofuels. Griffith asserts that the U.S. would need 2% of its land mass to supply the needed electricity, but his accounting makes three important errors. First, placing renewables doesn’t eliminate other uses of that land, particularly for wind. Acreage devoted to wind in particular can be used also for different types of farming and even open space. In comparison, fossil-fuel and nuclear plants completely displace any other land use. Turbine technology is evolving to limit avian mortality (and even then its tall buildings and household cats that cause most bird deaths). Second most of the solar supply can be met on rooftops and covering parking lots. These locations are cost effective compared to grid scale sources once we account for transmission costs. And third, our energy storage is literally driving down the road–in our new electric vehicles. A 100% EV fleet in California will have enough storage to meet 30 times the current peak load. A car owner will be able to devote less than 5% of their battery capacity to meet their home energy needs. All of this means that the real footprint can be much less than 1%.

Nuclear power has never lived up to its promise and is expensive compared to other low-emission options. While the direct costs of current-technology nuclear power is more than 12 cents a kilowatt-hour when adding transmission, grid-scale renewables are less than half of that, and distributed energy resources are at least comparable with almost no land-use footprint and able to provide better reliability and resilience. In addition, the potential of catastrophic events at nuclear plants adds another 1 to 3 cents per kilowatt-hour. Small modular reactors (SMR) have been promoted as a game changer, but we have been waiting for two decades. Nuclear or green hydrogen may emerge as economically-viable options, but we shouldn’t base our plans on that.

Guidelines For Better Net Metering; Protecting All Electricity Customers And The Climate

Authors Ahmad Faruqui, Richard McCann and Fereidoon Sioshansi[1] respond to Professor Severin Borenstein’s much-debated proposal to reform California’s net energy metering, which was first published as a blog and later in a Los Angeles Times op-ed.

PG&E takes a bold step on enabling EV back up power, but questions remain

PG&E made exciting announcements about partnerships with GM and Ford last week to test using electric vehicles (EVs) for backup power for residential customers. (Ford also announced an initiative to create an open source charging standard.) PG&E also announced an initiative to install circuit breakers that facilitate use of onsite backup power. PG&E is commended for stepping forward to align its corporate strategy with the impending technology wave that could increase consumer energy independence.

I wrote about the promise of EVs in this role (“Electric vehicles as the next smartphone”) when I was struck by Ford’s F-150 Lightning ads last summer and how the consumer segment that buys pickups isn’t what we usually think of as the “EV crowd.” These initiatives could be game changers.

That said, several questions arise about PG&E’s game plan and whether the utility is still planning to hold customers captive:

  • How does PG&E plan to recover the costs for what are “beyond the meter” devices that typically is outside of what’s allowed? And how are the risks in these investments to be shared between shareholders and ratepayers? Will PG&E get an “authorized” rate of return with default assurances of costs being approved for recovery from ratepayers? How will PG&E be given appropriate incentives on making timely investments with appropriate risk, especially given the utility’s poor track record in acquiring renewable resources?
  • What will be the relationships between PG&E and the participating auto manufacturers? Will the manufacturers be required to partner with PG&E going forward? Will the manufacturers be foreclosed from offering products and services that would allow customers to exit PG&E’s system through self generation? Will PG&E close out other manufacturers from participating or set up other access barriers that prevent them from offering alternatives?
  • Delivering PG&E’s “personal microgrid backup power transfer meter device” is a good first step, but it requires disconnecting the solar panels to use, which means that it only support fossil fueled generators and grid-connected batteries. This device needs a switch for the solar panels as well. Further, it appears the device will only be available to customers who participate in PG&E’s Residential Generator and Battery Rebate Program. Can PG&E continue to offer this feature to vendors who offer only fossil-fueled generators? How will PG&E mitigate the local air pollution impacts from using fossil-fueled back up generators (BUGs) for extended periods? (California already has 8,000 megawatts of BUGs.)
  • How will these measures be integrated with the planned system reinforcements in PG&E’s 2022 Wildfire Mitigation Plan Update to reduce the costs of undergrounding lines? Will PG&E allow these back up sources and devices for customers who are interested in extended energy independence, particularly those who want to ride out a PSPS event?
  • How will community choice aggregators (CCAs) or other local governments participate? Will communities be able to independently push these options to achieve their climate action and adaptation plan (CAAP) goals?

A cheaper wildfire mitigation solution: using microgrids instead of undergrounding

PG&E released its 2022 Wildfire Mitigation Plan Update (2022 WMPU) That plan calls for $6 billion of capital investment to move 3,600 miles of underground by 2026. This is just over a third of the initial proposed target of 10,000 miles. Based on PG&E’s proposed ramping up, the utility would reach its target by 2030.

One alternative that could better control costs would be to install community and individual microgrids. Microgrids are likely more cost effective and faster means of reducing wildfire risk and saving lives. I wrote about how to evaluate this choice for relative cost effectiveness based on density of load and customers per mile of line.

Microgrids can mitigate wildfire risk by the utility turning off overhead wire service for extended periods, perhaps weeks at a time, during the highest fire risk periods. The advantage of a periodically-islanded microgrid is 1) that the highest fire risk coincides with the most solar generation so providing enough energy is not a problem and 2) the microgrids also can be used during winter storms to better support the local grid and to ride out shorter outages. Customers’ reliability may degrade because they would not have the grid support, but such systems generally have been quite reliable. In fact, reliability may increase because distribution grid outages are about 15 times more likely than system or regional outages.

The important question is whether microgrids can be built much more quickly than undergrounding lines and in particular whether PG&E has the capacity to manage such a buildout at a faster rate? PG&E has the Community Microgrid Enablement Program. The utility was recently authorized to build several isolated microgrids as an alternative to rebuilding fire-damaged distribution lines to isolated communities. Turning to local governments to manage many different construction projects likely would improve this schedule, like how Caltrans delegates road construction to counties and cities.

Controlling the costs of wildfire mitigation

Based on the current cost of capital this initial undergrounding phase will add $1.6 billion to annual revenue requirements or an additional 8% above today’s level. This would be on top of PG&E request in its 2023 General Rate Case for a 48% increase in distribution rates by 2023 and 78% increase by 2026, and a 31% increase in overall bundled rates by 2023 and 43% by 2026. The 2022 WMPU would take the increase to over 50% by 2026 (and that doesn’t’ include the higher maintenance costs). That means that residential rates would increase from 28.7 cents per kilowatt-hour today (already 21% higher than December 2020) to 36.4 cents in 2026. Building out the full 10,000 miles could lead to another 15% increase on top of all of this.

Turning to the comparison of undergrounding costs to microgrids, these two charts illustrate how to evaluate the opportunities for microgrids to lower these costs. PG&E states the initial cost per mile for undergrounding is $3.75 million, dropping to $2.5 million, or an average of $2.9 million. The first figure looks at community scale microgrids, using National Renewable Energy Laboratory (NREL) estimates. It shows how the cost effectiveness of installing microgrids changes with density of peak loads on a circuit on the vertical axis, cost per kilowatt for a microgrid on the horizontal axis, and each line showing the division where undergrounding is less expensive (above) or microgrids are less expensive (below) based on the cost of undergrounding. As a benchmark, the dotted line shows the average load density in the PG&E system, combined rural and urban. So in average conditions, community microgrids are cheaper regardless of the costs of microgrids or undergrounding.

The second figure looks at individual residential scale microgrids, again using NREL estimates. It shows how the cost effectiveness of installing microgrids changes with customer density on a circuit on the vertical axis, cost per kilowatt for a microgrid on the horizontal axis, and each line showing the division where undergrounding is less expensive (above) or microgrids are less expensive (below). As a benchmark, the dotted line shows the average customer density in the PG&E system, combined rural and urban. Again, residential microgrids are less expensive in most situations, especially as density falls below 75 customers per mile.

A movement towards energy self-sufficiency is growing in California due to a confluence of factors. PG&E’s WMPU should reflect these new choices in manner that can reduce rates for all customers.

(Here’s my testimony on this topic filed by the California Farm Bureau in PG&E’s 2023 General Rate Case on its Wildfire Management Plan Update.)