Tag Archives: greenhouse gases

What “Don’t Look Up” really tells us

The movie Don’t Look Up has been getting “two thumbs up” from a certain political segment for speaking to truth in their view. An existential threat from a comet is used metaphorically to describe the resistance to the import of climate change risk. After watching the film I have a somewhat different take away that speaks a different truth to those viewers who found the message resonating most. Instead of blaming our political system, we should have a different take away that we can act on collectively.

Don’t Look Up reveals several errors and blind spots in the scientific and activist communities in communicating with the public and influencing decision making. The first is a mistaken belief that the public is actually interested in scientific study beyond parlor room tricks. The second is believing that people will act solely based on shrill warnings from scientists acting as high priests. The third (which isn’t addressed in the film) is failing to fully acknowledge what people see that they may lose by responding to these calls for change. Instead these communities should reconsider what they focus on and how they communicate.

The movie opens with the first error–the astronomers’ long winded attempt to explain all of the analysis that went into their prediction. Most people don’t see how science has any direct influence on their lives–how is digging up dinosaurs or discovering the outer bounds of the universe relevant to every day living? It’s a failure of our education system, but we can’t correct to help now. Over the last several years the message on climate change has changed to highlight the apparent effects on storms and heat waves, but someone living in Kansas doesn’t see how rising sea levels will affect them. A long explanation about the mechanics and methods just loses John Q. Public (although there is a small cadre that is fascinated) and they tune out. It’s hard to be disciplined with a simple message when you find the deeper complexity interesting, but that’s what it will take.

Shrill warnings have never been well received, no matter the call. We see that today with the resistance to measures to suppress the COVID-19 pandemic. James Hansen at NASA first raised the alarm about climate change in the 1980s but he was largely ignored due to his righteousness and arrogance in public. He made a serious error in stepping well outside of his expertise to assert particular solutions. The public has always looked to who they view as credible, regardless of their credentials, for guidance. Academics have too often assumed that they deserve this respect simply because they have “the” credential. That much of the public views science as mysterious with little more basis than religion does not help the cause. Instead, finding the right messengers is key to being successful.

Finally, and importantly overlooked in the film, a call to action of this magnitude requires widespread changes in behaviors and investments. People generally have worked hard to achieve what they have and are risk averse to such changes that may severely erode their financial well-being. For example, as many as 1 in 5 private sector jobs are tied to automobiles and fossil fuel production. One might extoll the economic benefits of switching to renewable electricity but workers and investors in these sectors are uncertain about their futures with no clear pathways to share in this new prosperity. Without addressing a truly valid means of resolving these risks beyond the tired “retraining” shibboleth, this core and its sympathizers will resist meaningful change.

Effecting these solutions likely require sacrifice from those who benefit from these changes. Pointing to benefit-cost analyses that rely on a “faux” hypothetical transaction to justify these solutions really is no better than the wealthy asserting asserting that they deserve to keep most of their financial gains simply because that’s how the market works. Compensating owners of these assets and making what appears to be inefficient decisions to maintain impacted communities may seem unfair for a variety of reasons, but we need to overcome our biases embedded in our favored solutions to move forward.

What to do about Diablo Canyon?

The debate over whether to close Diablo Canyon has resurfaced. The California Public Utilities Commission, which support from the Legislature, decided in 2018 to close Diablo by 2025 rather than proceed to relicensing. PG&E applied in 2016 to retire the plant rather than relicense due to the high costs that would make the energy uneconomic. (I advised the Joint CCAs in this proceeding.)

Now a new study from MIT and Stanford finds potential savings and emission reductions from continuing operation. (MIT in particular has been an advocate for greater use of nuclear power.) Others have written opinion articles on either side of the issue. I wrote the article below in the Davis Enterprise addressing this issue. (It was limited to 900 words so I couldn’t cover everything.)

IT’S OK TO CLOSE DIABLO CANYON NUCLEAR PLANT
A previous column (by John Mott-Smith) asked whether shutting down the Diablo Canyon nuclear plant is risky business if we don’t know what will replace the electricity it produces. John’s friend Richard McCann offered to answer his question. This is a guest column, written by Richard, a universally respected expert on energy, water and environmental economics.

John Mott-Smith asked several questions about the future of nuclear power and the upcoming closure of PG&E’s Diablo Canyon Power Plant in 2025. His main question is how are we going to produce enough reliable power for our economy’s shift to electricity for cars and heating. The answers are apparent, but they have been hidden for a variety of reasons.
I’ve worked on electricity and transportation issues for more than three decades. I began my career evaluating whether to close Sacramento Municipal Utility District’s Rancho Seco Nuclear Generating Station and recently assessed the cost to relicense and continue operations of Diablo after 2025.
Looking first at Diablo Canyon, the question turns almost entirely on economics and cost. When the San Onofre Nuclear Generating Station closed suddenly in 2012, greenhouse gas emissions rose statewide the next year, but then continued a steady downward trend. We will again have time to replace Diablo with renewables.
Some groups focus on the risk of radiation contamination, but that was not a consideration for Diablo’s closure. Instead, it was the cost of compliance with water quality regulations. The power plant currently uses ocean water for cooling. State regulations required changing to a less impactful method that would have cost several billion dollars to install and would have increased operating costs. PG&E’s application to retire the plant showed the costs going forward would be at least 10 to 12 cents per kilowatt-hour.
In contrast, solar and wind power can be purchased for 2 to 10 cents per kilowatt-hour depending on configuration and power transmission. Even if new power transmission costs 4 cents per kilowatt-hour and energy storage adds another 3 cents, solar and wind units cost about 3 cents, which totals at the low end of the cost for Diablo Canyon.
What’s even more exciting is the potential for “distributed” energy resources, where generation and power management occurs locally, even right on the customers’ premises rather than centrally at a power plant. Rooftop solar panels are just one example—we may be able to store renewable power practically for free in our cars and trucks.
Automobiles are parked 95% of the time, which means that an electric vehicle (EV) could store solar power at home or work during the day and for use at night. When we get to a vehicle fleet that is 100% EVs, we will have more than 30 times the power capacity that we need today. This means that any individual car likely will only have to use 10% of its battery capacity to power a house, leaving plenty for driving the next day.
With these opportunities, rooftop and community power projects cost 6 to 10 cents per kilowatt-hour compared with Diablo’s future costs of 10 to 12 cents.
Distributed resources add an important local protection as well. These resources can improve reliability and resilience in the face of increasing hazards created by climate change. Disruptions in the distribution wires are the cause of more than 95% of customer outages. With local generation, storage, and demand management, many of those outages can be avoided, and electricity generated in our own neighborhoods can power our houses during extreme events. The ad that ran during the Olympics for Ford’s F-150 Lightning pick-up illustrates this potential.
Opposition to this new paradigm comes mainly from those with strong economic interests in maintaining the status quo reliance on large centrally located generation. Those interests are the existing utilities, owners, and builders of those large plants plus the utility labor unions. Unfortunately, their policy choices to-date have led to extremely high rates and necessitate even higher rates in the future. PG&E is proposing to increase its rates by another third by 2024 and plans more down the line. PG&E’s past mistakes, including Diablo Canyon, are shown in the “PCIA” exit fee that [CCA] customers pay—it is currently 20% of the rate. Yolo County created VCEA to think and manage differently than PG&E.
There may be room for nuclear generation in the future, but the industry has a poor record. While the cost per kilowatt-hour has gone down for almost all technologies, even fossil-fueled combustion turbines, that is not true for nuclear energy. Several large engineering firms have gone bankrupt due to cost overruns. The global average cost has risen to over 10 cents per kilowatt-hour. Small modular reactors (SMR) may solve this problem, but we have been promised these are just around the corner for two decades now. No SMR is in operation yet.
Another problem is management of radioactive waste disposal and storage over the course of decades, or even millennia. Further, reactors fail on a periodic basis and the cleanup costs are enormous. The Fukuyama accident cost Japan $300 to $750 billion. No other energy technology presents such a degree of catastrophic failure. This liability needs to be addressed head on and not ignored or dismissed if the technology is to be pursued.

Part 1: A response to “Rooftop Solar Inequity”

Severin Borenstein at the Energy Institure at Haas has plunged into the politics of devising policies for rooftop solar systems. I respond to two of his blog posts in two parts here, with Part 1 today. I’ll start by posting a link to my earlier blog post that addresses many of the assertions here in detail. And I respond to to several other additional issues here.

First, the claims of rooftop solar subsidies has two fallacious premises. First, it double counts the stranded cost charge from poor portfolio procurement and management I reference above and discussed at greater length in my blog post. Take out that cost and the “subsidy” falls substantially. The second is that solar hasn’t displaced load growth. In reality utility loads and peak demand have been flat since 2006 and even declining over the last three years. Even the peak last August was 3,000 MW below the record in 2017 which in turn was only a few hundred MW above the 2006 peak. Rooftop solar has been a significant contributor to this decline. Displaced load means displaced distribution investment and gas fired generation (even though the IOUs have justified several billion in added investment by forecasted “growth” that didn’t materialized.) I have documented those phantom load growth forecasts in testimony at the CPUC since 2009. The cost of service studies supposedly showing these subsidies assume a static world in which nothing has changed with the introduction of rooftop solar. Of course nothing could be further from the truth.

Second TURN and Cal Advocates have all be pushing against decentralization of the grid for decades back to restructuring. Decentralization means that the forums at the CPUC become less important and their influence declines. They have all fought against CCAs for the same reason. They’ve been fighting solar rooftops almost since its inception as well. Yet they have failed to push for the incentives enacted in AB57 for the IOUs to manage their portfolios or to control the exorbitant contract terms and overabundance of early renewable contracts signed by the IOUs that is the primary reason for the exorbitant growth in rates.

Finally, there are many self citations to studies and others with the claim that the authors have no financial interest. E3 has significant financial interests in studies paid for by utilities, including the California IOUs. While they do many good studies, they also have produced studies with certain key shadings of assumptions that support IOUs’ positions. As for studies from the CPUC, commissioners frequently direct the expected outcome of these. The results from the Customer Choice Green Book in 2018 is a case in point. The CPUC knows where it’s political interests are and acts to satisfy those interests. (I have personally witnessed this first hand while being in the room.) Unfortunately many of the academic studies I see on these cost allocation issues don’t accurately reflect the various financial and regulatory arrangements and have misleading or incorrect findings. This happens simply because academics aren’t involved in the “dirty” process of ratemaking and can’t know these things from a distance. (The best academic studies are those done by those who worked in the bowels of those agencies and then went to academics.)

We are at a point where we can start seeing the additional benefits of decentralized energy resources. The most important may be the resilience to be gained by integrating DERs with EVs to ride out local distribution outages (which are 15 times more likely to occur than generation and transmission outages) once the utilities agree to enable this technology that already exists. Another may be the erosion of the political power wielded by large centralized corporate interests. (There was a recent paper showing how increasing market concentration has led to large wealth transfers to corporate shareholders since 1980.) And this debate has highlighted the elephant in the room–how utility shareholders have escaped cost responsibility for decades which has led to our expensive, wasteful system. We need to be asking this fundamental question–where is the shareholders’ skin in this game? “Obligation to serve” isn’t a blank check.

Calculating the risk reduction benefits of closing Germany’s nuclear plants

Max Aufhammer at the Energy Institute at Haas posted a discussion of this recent paper reviewing the benefits and costs of the closure of much of the German nuclear fleet after the Fukushima accident in 2011.

Quickly reading the paper, I don’t see how the risk of a nuclear accident is computed, but it looks like the value per MWH was taken from a different paper. So I did a quick back of the envelope calculation for the benefit of the avoided consequences of an accident. This paper estimates a risk of an accident once every 3,704 reactor-operating years (which is very close to a calculation I made a few years ago). (There are other estimates showing significant risk as well.) For 10 German reactors, this translates to 0.27% per year.

However, this is not a one-off risk, but rather a cumulative risk over time, as noted in the referenced study. This is akin to the seismic risk on the Hayward Fault that threatens the Delta levees, and is estimated at 62% over the next 30 years. For the the German plants, this cumulative probability over 30 years is 8.4%. Using the Fukushima damages noted in the paper, this represents $25 to $63 billion. Assuming an average annual output of 7,884 GWH, the benefit from risk reduction ranges from $11 to $27 per MWH.

The paper appears to make a further error in using only the short-run nuclear fuel costs of $10 per MWH as representing the avoided costs created by closing the plants. Additional avoided costs include avoided capital additions that accrue with refueling and plant labor and O&M costs. For Diablo Canyon, I calculated in PG&E’s 2019 ERRA proceeding that these costs were close to an additional $20 per MWH. I don’t know the values for the German plants, but clearly they should be significant.

CCAs don’t undermine their mission by taking a share of Diablo Canyon

Northern California community choice aggregators (CCAs) are considering whether to accept an offer from PG&E to allocate a proportionate share of its “large carbon-free” generation as a credit against the power charge indifference adjustment (PCIA) exit fee.  The allocation would include a share of Diablo Canyon power. The allocation for 2019 and 2020; an extension of this allocation is being discussed on the PCIA rulemaking.

The proposal faces opposition from anti-nuclear and local community activists who point to the policy adopted by many CCAs not to accept any nuclear power in their portfolios. However, this opposition is misguided for several reasons, some of which are discussed in this East Bay Community Energy staff report.

  • The CCAs already receive and pay for nuclear generation as part of the mix of “unspecified” power that the CCAs buy through the California Independent System Operator (CAISO). The entire cost of Diablo Canyon is included in the Total Portfolio Cost used to calculate the PCIA. The CCAs receive a “market value” credit against this generation, but the excess cost of recovering the investment in Diablo Canyon (for which PG&E is receiving double payment based on calculations I made in 1996) is recovered through the PCIA. The CCAs can either continue to pay for Diablo through the PCIA without receiving any direct benefits, or they can at least gain some benefits and potentially lower their overall costs. (CCAs need to be looking at their TOTAL generation costs, not just their individual portfolio, when resource planning.)
  • Diablo Canyon is already scheduled to close Unit 1 in 2024 and Unit 2 in 2025 after a contentious proceeding. This allocation is unlikely to change this decision as PG&E has said that the relicensed plant would cost in excess of $100 per megawatt-hour, well in excess of its going market value. I have written extensively here about how costly nuclear power has been and has yet to show that it can reduce those costs. Unless the situation changes significantly, Diablo Canyon will close then.
  • Given that Diablo is already scheduled for closure, the California Public Utilities Commission (CPUC) is unlikely to revisit this decision. But even so, a decision to either reopen A.16-08-006 or to open a new rulemaking or application would probably take close to a year, so the proceeding probably would not open until almost 2021. The actual proceeding would take up to a year, so now we are to 2022 before an actual decision. PG&E would have to take up to a year to plan the closure at that point, which then takes us to 2023. So at best the plant closes a year earlier than currently scheduled. In addition, PG&E still receives the full payments for its investments and there is likely no capital additions avoided by the early closure, so the cost savings would be minimal.

“Making the perfect the enemy of the better” for a carbon tax

In an opinion article published on Utility Dive, Kenneth Costello argues that adopting a carbon tax would be a mistake. As he says, “(i)nstead of a carbon tax, why not give more consideration to adaptive strategies, which can evolve over time in response to new information?” His arguments make several key errors and underestimate the political will required to deliver his preferred option.

We need not rely on the social cost of carbon (SCC) to set a tax. Instead of using a benefit-cost approach implied by the SCC, we can use a cost-effectiveness approach by setting the tax to achieve an expected amount of greenhouse gases reduction. This is really no different than how we conduct most of our private transactions–we don’t directly weigh the monetary benefits of buying a new car against its costs–we decide what type of car that we want and then spend the money to buy that car. We may not achieve the mythical “positive net benefits” using such a strategy, but the the truth is that benefit-cost analysis is problematic in the context of climate change, as Martin Weitzmann among others pointed out.

We have a good idea of how increased prices that would result from a carbon tax impact demand, contrary to Costello’s assertion. We have seen that over and over with changes in gasoline and electricity prices in the last half century. (One paper found that the early CAFE standards did not affect automobile fleet fuel economy until gas prices fell in 1984.) We can adaptively manage a carbon tax (which also can be implemented as a global trade tariff framework) to steer toward our emissions reduction target.

Costello instead proposes that we focus solely on climate adaptation by hardening our infrastructure and other measures. This illustrates a lack of understanding of the breadth of the expected impacts and the inability of a large segment of the world’s population to undertake such mitigation without a large wealth transfer. Further, such adaptation focuses largely on the direct impacts to humans and ignores the farther ranging ones on our global environment. Those latter effects, such as ocean acidification and melting of the tundra, can lead to catastrophic outcomes that cannot be readily adapted to, no matter what is spent. And there other effects that that we may not even know about. Focusing so narrowly on what might be adaptive strategies will lead to a gross underestimation of the costs to adapt.

Finally, Costello overestimates the political barriers to implementing and managing a carbon tax and overestimates the political will to implement adaptation strategies. Contrary to his assertion, environmental groups such as EDF and NRDC have been at the forefront of using prices and taxes to regulate environmental pollutants. (I have worked for several of them on such proposals.) Yes, politicians want to avoid taxes, but that reflects the more general problem of wanting to avoid any hard choices. And we only need to look at the state of the U.S. infrastructure to see how difficult it is to persuade the political system to make the investments that Costello recommends. This will be a tough road either way, but the carbon tax option cannot be simply dismissed based on Costello’s analysis.

 

Nuclear vs. storage: which is in our future?

Two articles with contrasting views of the future showed up in Utility Dive this week. The first was an opinion piece by an MIT professor referencing a study he coauthored comparing the costs of an electricity network where renewables supply more than 40% of generation compared to using advanced nuclear power. However, the report’s analysis relied on two key assumptions:

  1. Current battery storage costs are about $300/kW-hr and will remain static into the future.
  2. Current nuclear technology costs about $76 per MWh and advanced nuclear technology can achieve costs of $50 per MWh.

The second article immediately refuted the first assumption in the MIT study. A report from BloombergNEF found that average battery storage prices fell to $156/kW-hr in 2019, and projected further decreases to $100/kW-hr by 2024.

The reason that this price drop is so important is that, as the MIT study pointed out, renewables will be producing excess power at certain times and underproducing during other peak periods. MIT assumes that system operators will have to curtail renewable generation during low load periods and run gas plants to fill in at the peaks. (MIT pointed to California curtailing about 190 GWh in April. However, that added only 0.1% to the CAISO’s total generation cost.) But if storage is so cheap, along with inexpensive solar and wind, additional renewable capacity can be built to store power for the early evening peaks. This could enable us to free ourselves from having to plan for system peak periods and focus largely on energy production.

MIT’s second assumption is not validated by recent experience. As I posted earlier, the about to be completed Vogtle nuclear plant will cost ratepayers in Georgia and South Carolina about $100 per MWh–more than 30% more than the assumption used by MIT. PG&E withdrew its relicensing request for Diablo Canyon because the utility projected the cost to be $100 to $120 per MWh. Another recent study found nuclear costs worldwide exceeded $100/MWh and it takes an average of a decade finish a plant.

Another group at MIT issued a report earlier intended to revive interest in using nuclear power. I’m not sure of why MIT is so focused on this issue and continuing to rely on data and projections that are clearly outdated or wrong, but it does have one of the leading departments in nuclear science and engineering. It’s sad to see that such a prestigious institution is allowing its economic self interest to cloud its vision of the future.

What do you see in the future of relying on renewables? Is it economically feasible to build excess renewable capacity that can supply enough storage to run the system the rest of the day? How would the costs of this system compare to nuclear power at actual current costs? Will advanced nuclear power drop costs by 50%? Let us know your thoughts and add any useful references.

U. of Chicago misses mark on evaluating RPS costs

08_us_net_electricity_generation_by_fuel_source_1080_604_80

The U. of Chicago just released a working paper “Do Renewable Portfolio Standards Deliver?” that purports to assess the added costs of renewable portfolio standards adopted by states. The paper has two obvious problems that make the results largely useless for policy development purposes.

First, it’s entirely retrospective and then tries to make conclusions about future actions. The paper ignores that the high initial costs for renewables was driven down by a combination of RPS and other policies (e.g. net energy metering or NEM), and on a going forward basis, the renewables are now cost competitive with conventional resources. As a result, the going forward cost of GHG reductions is much smaller than the historic costs. In fact, the much more interesting question is “what would be the average cost of GHG reductions by moving from the current low penetration rate of renewables to substantially higher levels across the entire U.S., e.g., 50%, 60% etc. to 100%?” The high initial investment costs are then highly diluted by the now cost effective renewables.

Second, the abstract makes this bizarre statement “(t)hese cost estimates significantly exceed the marginal operational costs of renewables and likely reflect costs that renewables impose on the generation system…” Um, the marginal “operational” costs of renewables generally is pretty damn close to zero! Are the authors trying to make the bizarre claim (that I’ve addressed previously) that renewables should be priced at their “marginal operational costs”? This seems to reflect an remarkable naivete on the part of the authors. Based on this incorrect attribution, the authors cannot make any assumptions about what might be causing the rate difference.

Further, the authors appear to attribute the entire difference in rates to imposing an RPS standard. The fact is that these 29 states generally have also been much more active in other efforts to promote renewables, including for customers through NEM and DER rates, and to reduce demand. All of these efforts reduce load, which means that fixed costs are spread over a fewer amount of kilowatt-hours, which then causes rates to rise. The real comparison should be the differences in annual customer bills after accounting for changes in annual demand.

The authors also try to assign stranded cost recovery as a cost of GHG recovery. This is a questionable assignment since these are sunk costs which economists typically ignore. If we are to account for lost investment due to obsolescence of an older technology, economists are going to have go back and redo a whole lot of benefit-cost analyses! The authors would have to explain the special treatment of these costs.

Why do economists keep producing these papers in which they assume the world is static and that the future will be just like the past, even when the evidence of a rapidly changing scene is embedded in the data they are using?

Moving beyond the easy stuff: Mandates or pricing carbon?

figure-1

Meredith Fowlie at the Energy Institute at Haas posted a thought provoking (for economists) blog on whether economists should continue promoting pricing carbon emissions.

I see, however, that this question should be answered in the context of an evolving regulatory and technological process.

Originally, I argued for a broader role for cap & trade in the 2008 CARB AB32 Scoping Plan on behalf of EDF. Since then, I’ve come to believe that a carbon tax is probably preferable over cap & trade when we turn to economy wide strategies for administrative reasons. (California’s CATP is burdensome and loophole ridden.) That said, one of my prime objections at the time to the Scoping Plan was the high expense of mandated measures, and that it left the most expensive tasks to be solved by “the market” without giving the market the opportunity to gain the more efficient reductions.

Fast forward to today, and we face an interesting situation because the cost of renewables and supporting technologies have plummeted. It is possible that within the next five years solar, wind and storage will be less expensive than new fossil generation. (The rest of the nation is benefiting from California initial, if mismanaged, investment.) That makes the effective carbon price negative in the electricity sector. In this situation, I view RPS mandates as correcting a market failure where short term and long term prices do not and cannot converge due to a combination of capital investment requirements and regulatory interventions. The mandates will accelerate the retirement of fossil generation that is not being retired currently due to mispricing in the market. As it is, many areas of the country are on their way to nearly 100% renewable (or GHG-free) by 2040 or earlier.

But this and other mandates to date have not been consumer-facing. Renewables are filtered through the electric utility. Building and vehicle efficiency standards are imposed only on new products and the price changes get lost in all of the other features. Other measures are focused on industry-specific technologies and practices. The direct costs are all well hidden and consumers generally haven’t yet been asked to change their behavior or substantially change what they buy.

But that all would seem to change if we are to take the next step of gaining the much deeper GHG reductions that are required to achieve the more ambitious goals. Consumers will be asked to get out of their gas-fueled cars and choose either EVs or other transportation alternatives. And even more importantly, the heating, cooling, water heating and cooking in the existing building stock will have to be changed out and electrified. (Even the most optimistic forecasts for biogas supplies are only 40% of current fossil gas use.) Consumers will be presented more directly with the costs for those measures. Will they prefer to be told to take specific actions, to receive subsidies in return for higher taxes, or to be given more choice in return for higher direct energy use prices?

The two problems to be addressed head on by nuclear power advocates

6e0c32214e80ee9f4fbabf2e4ffe6fcd

Nuclear power advocates bring up the technology as a supposedly necessary part of a zero-GHG portfolio to address climate change. They insist that the “next generation” technology will be a winner if it is allowed to be developed.

Nevertheless, nuclear has two significant problems beyond whatever is in the next generation technology:

  1. Construction cost overruns are the single biggest liability that has been killing the technology. While most large engineering projects have contingencies for 25-30% overruns, almost all nuclear plants have overruns that are multiples of the original cost estimates. This has been driving the most experienced engineering/construction firms into bankruptcies. Until that problem is resolved, all energy providers should be very leery of making commitments to a technology that takes at least 7 years to build.
  2. We still haven’t addressed waste disposal and storage over the course of decades, much less millennia. No other energy technology presents such a degree of catastrophic failure from a single source. Again, this liability needs to be addressed head on and not ignored or dismissed if the technology is to be pursued.