Tag Archives: electricity markets

Why utility prices cannot be set using short-run marginal costs

One commentator on the Energy Institute at Haas’ blog entitled “Everyone Should Pay a ‘Solar Tax’” points out that one version of economic theory holds that short run marginal cost is the appropriate metric for composing efficient prices. And he points out that short-run (SRMC) and long-run marginal costs (LRMC) should converge in equilibrium. So he implicitly says that long run marginal costs are the appropriate metric if as a stable long-run measure is based, as he states, on forecasts.

Even so, he misses an important aspect–using the SRMC for pricing relies on important conditions such as (1) relatively free entry and exit, (2) producers bear full risk for their investments, and (3) no requirements exist for minimum supply (i.e., no reserve margins). He points out that utilities overbuild their transmission and distribution (and I’ll point out their generation) systems. I would assert that is because of the market failures related to the fact that the conditions I listed above are missing–entry is restricted or prohibited, customers bear almost all of the risk, and reserve margins largely eliminates any potential for scarcity rents. In fact, California explicitly chose its reserve margin and resource adequacy procurement standards to eliminate the potential for pricing in the scarcity rents necessary for SRMC and LRMC to converge.

He correctly points out that apparent short run MC are quite low (not quite as close to zero as he asserts though)–a statement that implies that he expects that SRMC in a correctly functioning market would be much higher. In fact, as he states, the SRMC should converge to the LRMC. The fact is that SRMC has not risen to the LRMC on an annual average basis in decades in California (briefly in 2006, 2001 and 2000 (when generators exerted market power) and then back to the early 1980s). So why continue to insist that we should be using the current, incorrect SRMC as the benchmark when we know that it is wrong and we specifically know why its wrong? That we have these market failures to maintain system reliability and address the problems of network and monopolistic externalities is why we have regulation.

The solution is not to try to throw out our current regulatory scheme and then let the market price run free in the current institutional structure with a single dominant player. Avoiding market dominance is the raison d’etre for economic regulation. If that is the goal, the necessary first step is introducing and sustaining enough new entrants to be able to discipline the behavior of the dominant firm. Pricing reform must follow that change, not precede it. Competitive firms will not just spontaneously appear due to pricing reform.

It’s not clear that utilities “must” recover their “fixed” investments costs. Another of the needed fixes to the current regulatory scheme to improve efficiency is having utilities bear the risks of making incorrect investment decisions. Having warned (correctly) the IOUs about overforecasting demand growth for more than a dozen years now, they will not listen such analyses unless they have a financial incentive to do so.

Contrary to claims by this and other commentators, It is not efficient to charge customers a fixed charge beyond the service connection cost (which is about $10/month for residential customers for California IOUs). If the utility charges a fixed cost for the some portion of the rest of the grid, the efficient solution must then allow customers to sell their share of that grid to other customers to achieve Pareto optimal allocations among the customers. We could set up a cumbersome, high transaction cost auction or bulletin board to facilitate these trades, but there is at least another market mechanism that is nearly as efficient with much lower transaction costs–the dealer. (The NYSE uses a dealer market structure with market makers acting as dealers.) In the case of the utility grid, the utility that operates the grid also can act as the dealer. The most likely transaction unit would bein kilowatt-hours. So we’re left back where we started with volumetric rates. The problem with this model is not that it isn’t providing sufficient revenue certainty–that’s not an efficiency criterion. The problem is that the producer isn’t bearing enough of the risk of insufficient revenue recovery.

An alternative solution may be to set the distribution volumetric rate at the LRMC with no assurance of revenue requirement on that portion, and then recover the difference between average cost and LRMC in a fixed charge. This is the classic “lump sum” solution to setting monopoly pricing. The issue has been how to allocate those lump sum payments. However, the true distribution LRMC appears to be higher than average costs now based on how average rates have been rising.

What is the real threat to electrification? Not solar rooftops

The real threat to electrification are the rapidly escalating costs in the distribution system, not some anomaly in rate design related to net energy metering. As I have written here several times, rooftop solar if anything has saved ratepayers money so far, just as energy efficiency has done so. PG&E’s 2023 GRC is asking for a 66% increase in distribution rates by 2026 and average rates will approach 40 cents/kWh. We need to be asking why are these increases happening and what can we do to make electricity affordable for everyone.

Perhaps most importantly, the premise that there’s a “least cost” choice put forward by economists at the Energy Institute at Haas among others implies that there’s some centralized social welfare function. This is a mythological construct created for the convenience of economists (of which I’m one) to point to an “efficient” solution. Other societal objectives beyond economic efficiency include equitably allocating cost responsibility based on economic means, managing and sharing risks under uncertainty, and limiting political power that comes from economic assets. Efficiency itself is limited in what it tells us due to the multitude of market imperfections. The “theory of the second best” states that in an economic sector with uncorrected market failures, actions to correct market failures in another related sector with the intent of increasing economic efficiency may actually decrease overall economic efficiency. In the utility world for example, shareholders are protected from financial losses so revenue shortfalls are allocated to customers even as their demands fall. This blunts the risk incentive that is central to economic efficiency. Claiming that adding a fixed charge will “improve” efficiency has little basis without a complete, fundamental assessment of the sector’s market functionality.

The real actors here are individual customers who are making individual decisions in our current economic resource allocation system, and not a central entity dictating choices to each of us. Different customers have different preferences in what they value and what they fear. Rooftop installations have been driven to a large extent by a dread of utility mismanagement that makes expectations about future rates much more uncertain.

The single most important trait of a market economy is the discipline imposed by appropriately assigning risk burden to the decision make and not pricing design. The latter is the tail wagging the dog. Market distortions are universally caused by separating consequences from decisions. And right now the only ability customers have to exercise control over their electricity bills is to somehow exit the system. If we take away that means of discipline we will never be able to control electricity rates in a way that will lead to effective electrification.

Part 2: A response to “Is Rooftop Solar Just Like Energy Efficiency?”

Severin Borenstein at the Energy Institute at Haas has written another blog post asserting that solar rooftop rates are inefficient and must changed radically. (I previously responded to an earlier post.) When looking at the efficiency of NEM rates, we need to look carefully at several elements of electricity market and the overall efficiency of utility ratemaking. We can see that we can come to a very different conclusion.

I filed testimony in the NEM 3.0 rulemaking last month where I calculated the incremental cost of transmission investment for new generation and the reduction in the CAISO peak load that looks to be attributable to solar rooftop.

  • Using FERC Form 1 and CEC powerplant data, I calculated that the incremental cost of transmission is $37/MWH. (And this is conservative due to a couple of assumptions I made.) Interestingly, I had done a similar calculation for AEP in the PJM interconnect and also came up with $37/MWH. This seems to be a robust value in the right neighborhood.
  • Load growth in California took a distinct change in trend in 2006 just as solar rooftop installations gained momentum. I found a 0.93 correlation between this change in trend and the amount of rooftop capacity installed. Using a simple trend, I calculated that the CAISO load decreased 6,000 MW with installation of 9,000 MW of rooftop solar. Looking at the 2005 CEC IEPR forecast, the peak reduction could be as large as 11,000 MW. CAISO also estimated in 2018 that rooftop solar displaced in $2.6 billion in transmission investment.

When we look at the utilities’ cost to acquire renewables and add in the cost of transmission, we see that the claim that grid-scale solar is so much cheaper than residential rooftop isn’t valid. The “green” market price benchmark used to set the PCIA shows that the average new RPS contract price in 2016 was still $92/MWH in 2016 and $74/MWH in 2017. These prices generally were for 30 year contracts, so the appropriate metric for comparing a NEM investment is against the vintage of RPS contracts signed in the year the rooftop project was installed. For 2016, adding in the transmission cost of $37/MWH, the comparable value is $129/MWH and in 2017, $111/MWH. In 2016, the average retail rates were $149/MWH for SCE, $183/MWH for PG&E and $205/MWH for SDG&E. (Note that PG&E’s rate had jumped $20/MWH in 2 years, while SCE’s had fallen $20/MWH.) In a “rough justice” way, the value of the displaced energy via rooftop solar was comparable to the retail rates which reflect the value of power to a customer, at least for NEM 1.0 and 2.0 customers. Rooftop solar was not “multiples” of grid scale solar.

These customers also took on investment risk. I calculated the payback period for a couple of customers around 2016 and found that a positive payback was dependent on utility rates rising at least 3% a year. This was not a foregone conclusion at the time because retail rates had actually be falling up to 2013 and new RPS contract prices were falling as well. No one was proposing to guarantee that these customers recover their investments if they made a mistake. That they are now instead benefiting is unwarranted hubris that ignores the flip side of the importance of investment risk–that investors who make a good efficient decision should reap the benefits. (We can discuss whether the magnitude of those benefits are fully warranted, but that’s a different one about distribution of income and wealth, not efficiency.)

Claiming that grid costs are fixed immutable amount simply isn’t a valid claim. SCE has been trying unsuccessfully to enact a “grid charge” with this claim since at least 2006. The intervening parties have successfully shown that grid costs in fact are responsive to reductions in demand. In addition, moving to a grid charge that creates a “ratchet effect” in revenue requirements where once a utility puts infrastructure in place, it faces no risk for poor investment decisions. On the other hand the utility can place its costs into ratebase and raise rates, which then raises the ratchet level on the fixed charge. One of the most important elements of a market economy that leads to efficient investment is that investors face the risk of not earning a return on an investment. That forces them to make prudent decisions. A “ratcheted” grid charge removes this risk even further for utilities. If we’re claiming that we are creating an “efficient” pricing policy, then we need to consider all sides of the equation.

The point that 50% of rooftop solar generation is used to offset internal use is important–while it may not be exactly like energy efficiency, it does have the most critical element of energy efficiency. That there are additional requirements to implement this is of second order importance, Otherwise we would think of demand response that uses dispatch controls as similarly distinct from EE. Those programs also require additional equipment and different rates. But in fact we sum those energy savings with LED bulbs and refrigerators.

An important element of the remaining 50% that is exported is that almost all of it is absorbed by neighboring houses and businesses on the same local circuit. Little of the power goes past the transformer at the top of the circuit. The primary voltage and transmission systems are largely unused. The excess capacity that remains on the system is now available for other customers to use. Whether investors should be able to recover their investment at the same annual rate in the face of excess capacity is an important question–in a competitive industry, the effective recovery rate would slow.

Finally, public purpose program (PPP) and wildfire mitigation costs are special cases that can be simply rolled up with other utility costs.

  • The majority of PPP charges are a form of a tax intended for income redistribution. That function is admirable, but it shows the standard problem of relying on a form of a sales tax to finance such programs. A sales tax discourages purchases which then reduces the revenues available for income transfers, which then forces an increase in the sales tax. It’s time to stop financing the CARE and FERA programs from utility rates.
  • Wildfire costs are created by a very specific subclass of customers who live in certain rural and wildlands-urban interface (WUI) areas. Those customers already received largely subsidized line extensions to install service and now we are unwilling to charge them the full cost of protecting their buildings. Once the state made the decision to socialize those costs instead, the costs became the responsibility of everyone, not just electricity customers. That means that these costs should be financed through taxes, not rates.

Again, if we are trying to make efficient policy, we need to look at the whole. It is is inefficient to finance these public costs through rates and it is incorrect to assert that there is an inefficient subsidy created if a set of customers are avoiding paying these rate components.

Why are real-time electricity retail rates no longer important in California?

The California Public Utilities Commission (CPUC) has been looking at whether and how to apply real-time electricity prices in several utility rate applications. “Real time pricing” involves directly linking the bulk wholesale market price from an exchange such as the California Independent System Operator (CAISO) to the hourly retail price paid by customers. Other charges such as for distribution and public purpose programs are added to this cost to reach the full retail rate. In Texas, many retail customers have their rates tied directly or indirectly to the ERCOT system market that operates in a manner similar to CAISO’s. A number of economists have been pushing for this change as a key solution to managing California’s reliability issues. Unfortunately, the moment may have passed where this can have a meaningful impact.

In California, the bulk power market costs are less than 20% of the total residential rate. Even if we throw in the average capacity prices, it only reaches 25%. In addition, California has a few needle peaks a year compared to the much flatter, longer, more frequent near peak loads in the East due to the differences in humidity. The CAISO market can go years without real price deviations that are consequential on bills. For example, PG&E’s system average rate is almost 24 cents per kilowatt-hour (and residential is even higher). Yet, the average price in the CAISO market has remained at 3 to 4 cents per kilowatt-hour since 2001, and the cost of capacity has actually fallen to about 2 cents. Even a sustained period of high prices such as occurred last August will increase the average price by less than a penny–that’s less than 5% of the total rate. The story in 2005 was different, when this concept was first offered with an average rate of 13 cents per kilowatt-hour (and that was after the 4 cent adder from the energy crisis). In other words, the “variable” component just isn’t important enough to make a real difference.

Ahmad Faruqui who has been a long time advocate for dynamic retail pricing wrote in a LinkedIn comment:

“Airlines, hotels, car rentals, movie theaters, sporting events — all use time-varying rates. Even the simple parking meter has a TOU rate embedded in it.”

It’s true that these prices vary with time, and electricity prices are headed that way if not there already. Yet these industries don’t have prices that change instantly with changes in demand and resource availability–the prices are often set months ahead based on expectations of supply and demand, much as traditional electricity TOU rates are set already. Additionally, in all of these industries , the price variations are substantially less than 100%. But for electricity, when the dynamic price changes are important, they can be up to 1,000%. I doubt any of these industries would use pricing variations that large for practical reasons.

Rather than pointing out that this tool is available and some types of these being used elsewhere, we should be asking why the tool isn’t being used? What’s so different about electricity and are we making the right comparisons?

Instead, we might look at a different package to incorporate customer resources and load dynamism based on what has worked so far.

  • First is to have TOU pricing with predictable patterns. California largely already has this in place, and many customer groups have shown how they respond to this signal. In the Statewide Pilot on critical peak period price, the bulk of the load shifting occurred due to the implementation of a base TOU rate, and the CPP effect was relatively smaller.
  • Second, to enable more distributed energy resources (DER) is to have fixed price contracts akin to generation PPAs. Everyone understands the terms of the contracts then instead of the implicit arrangement of net energy metering (NEM) that is very unsatisfactory for everyone now. It also means that we have to get away from the mistaken belief that short-run prices or marginal costs represent “market value” for electricity assets.
  • Third for managing load we should have robust demand management/response programs that target the truly manageable loads, and we should compensate customers based on the full avoided costs created.

ERCOT has the peak period scarcity price too high

The freeze and resulting rolling outages in Texas in February highlighted the unique structure of the power market there. Customers and businesses were left with huge bills that have little to do with actual generation expenses. This is a consequence of the attempt by Texas to fit into an arcane interpretation of an economic principle where generators should be able to recover their investments from sales in just a few hours of the year. Problem is that basic of accounting for those cashflows does not match the true value of the power in those hours.

The Electric Reliability Council of Texas (ERCOT) runs an unusual wholesale electricity market that supposedly relies solely on hourly energy prices to provide the incentives for incenting new generation investment. However, ERCOT is using the same type of administratively-set subsidies to create enough potential revenue to cover investment costs. Further, a closer examination reveals that this price adder is set too high relative to actual consumer value for peak load power. All of this leads to a conclusion relying solely on short-run hourly prices as a proxy for the market value that accrues to new entrants is a misplaced metric.

The total ERCOT market first relies on side payments to cover commitment costs (which creates barriers to entry but that’s a separate issue) and second, it transfers consumer value through to the Operating Reserve Demand Curve (ORDC) that uses a fixed value of lost load (VOLL) in an arbitrary manner to create “opportunity costs” (more on that definition at a later time) so the market can have sufficient scarcity rents. This second price adder is at the core of ERCOT’s incentive system–energy prices alone are insufficient to support new generation investment. Yet ERCOT has ignored basic economics and set this value too high based on both available alternatives to consumers and basic regional budget constraints.

I started with an estimate of the number of hours where prices need the ORDC to be at full VOLL of $9000/MWH to recover the annual revenue requirements of combustion turbine (CT) investment based on the parameters we collected for the California Energy Commission. It turns out to be about 20 to 30 hours per year. Even if the cost in Texas is 30% less, this is still more 15 hours annually, every single year or on average. (That has not been happening in Texas to date.) Note for other independent system operators (ISO) such as the California ISO (CAISO), the price cap is $1,000 to $2,000/MWH.

I then calculated the cost of a customer instead using a home generator to meet load during those hours assuming a life of 10 to 20 years on the generator. That cost should set a cap on the VOLL to residential customers as the opportunity cost for them. The average unit is about $200/kW and an expensive one is about $500/kW. That cost ranges from $3 to $5 per kWh or $3,000 to $5,000/MWH. (If storage becomes more prevalent, this cost will drop significantly.) And that’s for customers who care about periodic outages–most just ride out a distribution system outage of a few hours with no backup. (Of course if I experienced 20 hours a year of outage, I would get a generator too.) This calculation ignores the added value of using the generator for other distribution system outages created by events like a hurricane hitting every few years, as happens in Texas. That drives down this cost even further, making the $9,000/MWH ORDC adder appear even more distorted.

The second calculation I did was to look at the cost of an extended outage. I used the outages during Hurricane Harvey in 2017 as a useful benchmark event. Based on ERCOT and U.S. Energy Information Reports reports, it looks like 1.67 million customers were without power for 4.5 days. Using the Texas gross state product (GSP) of $1.9 trillion as reported by the St. Louis Federal Reserve Bank, I calculated the economic value lost over 4.5 days, assuming a 100% loss, at $1.5 billion. If we assume that the electricity outage is 100% responsible for that loss, the lost economic value per MWH is just under $5,000/MWH. This represents the budget constraint on willingness to pay to avoid an outage. In other words, the Texas economy can’t afford to pay $9,000/MWH.

The recent set of rolling blackouts in Texas provides another opportunity to update this budget constraint calculation in a different circumstance. This can be done by determining the reduction in electricity sales and the decrease in state gross product in the period.

Using two independent methods, I come up with an upper bound of $5,000/MWH, and likely much less. One commentator pointed out that ERCOT would not be able achieve a sufficient planning reserve level at this price, but that statement is based on the premises that short-run hourly prices reflect full market values and will deliver the “optimal” resource mix. Neither is true.

This type of hourly pricing overemphasizes peak load reliability value and undervalues other attributes such as sustainability and resilience. These prices do not reflect the full incremental cost of adding new resources that deliver additional benefits during non-peak periods such as green energy, nor the true opportunity cost that is exercised when a generator is interconnected rather than during later operations. Texas has overbuilt its fossil-fueled generation thanks to this paradigm. It needs an external market based on long-run incremental costs to achieve the necessary environmental goals.

Chasing gold at the end of the rainbow: how reliance on hourly markets doesn’t spur generation investment

dec2018cdrgraphic_550x624

Commentators have touted the Texas ERCOT market as the epitome of how a fully functioning hourly electricity market can deliver the economic signals needed to spur investment in new capacity. They further assert that this type of market can be technology neutral in what type of investment is made. The Federal Energy Regulatory Commission (FERC) largely adopted this position more than two decades ago when it initiated restructuring that led to the creation of these hourly markets, including the California Independent System Operator (CAISO). And FERC continues to take that stance, although it has allowed for short term capacity markets to backfill for reliability needs.

But now we hear that the Texas market is falling short in incenting new capacity investment. ERCOT which manages the Texas grid projects near term risks and a growing shortfall at least to 2024. At issue is the fact that waiting around for the gambler’s chance at price spike revenues doesn’t make a strong case for financing capital intensive generation, particularly if one’s own investment is likely to make those price spikes disappear. It’s like chasing the gold at the end of the rainbow!

This is another sign that hourly markets are not reliable indicators of market value, contrary to the view of proponents of those markets. The combination of the lumpiness of generation investment and the duration of that generation capital, how that new generation undermines the apparent value in the market, and the lack of political tolerance for failures in reliability or meeting environmental targets require that a much more holistic view of market value for these investments. The value of hedging risk, providing cost stability, improving reliability and resilience and reducing overall portfolio costs all need to be incorporated into a full valuation process.

Charging with the sun…really!

MITSUBISHI MOTOR SALES OF AMERICA, INC. CYPRESS CHARGING STATION

Severin Borenstein at the University of California’s Energy Institute at Haas posted on whether a consumer buying an electric vehicle was charging it with power from renewables. I have been considering the issue of how our short-run electricity markets are incomplete and misleading. I posted this response on that blog:

As with many arguments that look quite cohesive, it is based on key unstated premises that if called into question undermine the conclusions. I would relabel the “correct” perspective as the “conventional” which assumes that the resources at the margin are defined by short-run operational decisions. This is the basic premise of the FERC-designed power market framework–somehow all of those small marginal energy increases eventually add up into one large new powerplant. This is the standard economic assumption that a series of “putty” transactions in the short term will evolve into a long term “clay” investment. (It’s all of those calculus assumptions about continuity that drive this.) This was questionable in 1998 as it became apparent that the capacity market would have to run separately from the energy market, and is now even more questionable as we replace fossil fuel with renewables.

I would call the fourth perspective as “dynamic”. From this perspective these short run marginal purchases on the CAISO are for balancing to meet current demand. As Marc Joseph pointed out, all of the new incremental demand is being met in a completely separate market that only uses the CAISO as a form of a day to day clearinghouse–the bilateral PPAs. No load serving entity is looking to the CAISO as their backstop resource source. Those long term PPAs are almost universally renewables–even in states without RPS standards. In addition, fossil fueled plants–coal and gas–are being retired and replaced by solar and wind, and that is an additional marginal resource not captured in the CAISO market.

So when a consumer buys a new EV, that added load is being met with renewables added to either meet new load or replace retired fossil. Because these renewables have zero operating costs, they don’t show up in the CAISO’s “marginal” resources for simple accounting reasons, not for fundamental economic reasons. And when that consumer also adds solar panels at the same time, those panels don’t show up at all in the CAISO transactions and are ignored under the conventional view.

There is an issue of resource balancing costs in the CAISO incurred by one type of resource versus another, but that cost is only a subcomponent of the overall true marginal cost from a dynamic perspective.

So how we view the difference between “putty” and “clay” increments is key to assessing whether a consumer is charging their EV with renewables or not.

California already paid for utility assets once: Why do we have to do it again?

——renewablemix-cleangreengrid-642x300

Rather than focus on CCA procurement, the CPUC would better serve the state to use the provisions of AB 57 (e.g., PUC Section 454.5(b)(6)) and its other authorities, including those still in force from AB 1890 (1996). PG&E and SCE already collected $7 billion on an accelerated basis during the “competitive transition period” from 1998 to 2001 towards their legacy utility-owned generation resources such as Diablo Canyon, San Onofre and their hydropower generation.  SDG&E completely paid off its generation portfolio in 1999 this way. Further, PG&E had already recovered its entire investment in Diablo Canyon by December 31, 1997 prior to the start of the opening of the restructured market. (I tracked the CTC accounts throughout the period, reporting to the CEC in 2001, and calculated the return on investment in Diablo Canyon for settlement discussions in 1996.) If the Commission wanted to repay the debts incurred during the 2000-01 energy crisis, the better solution, which it did in part with SCE, would have been to simply establish a “regulatory asset” with no connection to the generating facilities which had already been paid off. As it is, customers-bundled and departed–are paying twice (and THREE times in the case of Diablo Canyon) for the same power plants.

The IOUs currently lack any real incentives to control their portfolio costs, as evidenced by their bundled portfolio plans for PG&E and SCE. Those plans say nothing about minimizing costs or managing risks except to avoid incurring shareholder penalties for missing the RPS mandates. In fact, PG&E has accrued a 3.3 cents per kilowatt-hour premium above the market value of its RPS portfolio to protect against a potential “price spike” between now and 2027. It is no wonder that customers have become unhappy with how the IOUs have managed their generation portfolios.

CCAs reach RPS targets with long-term PPAs

Joint CCA Notice of Ex Parte 10.24.16_CCS-RPS

As I listen to the opening of the joint California Customer Choice En Banc held by the CPUC and CEC, I hear Commissioners and speakers claiming that community choice aggregators (CCAs) are taking advantage of the current market and shirking their responsibilities for developing a responsible, resilient resource portfolio.

The CPUC’s view has two problems. The first is an unreasonable expectation that CCAs can start immediately as a full-grown organization with a complete procurement organization, and more importantly, a rock solid credit history. The second is how the CPUC has ignored the fact that the CCAs have already surpassed the state’s RPS targets  in most cases and that they have significant shares of long-term power purchase agreements (PPAs).

State law in fact penalizes excess procurement of RPS-eligible power by requiring that 65% of that specific portfolio be locked into long-term PPAs, regardless of the prudency of that policy. PG&E has already demonstrated that they have been unable to prudently manage its long-term portfolio, incurring a 3.3 cents per kilowatt-hour risk hedge premium on its RPS portfolio. (Admittedly, that provision could be interpreted to be 65% of the RPS target, e.g., 21.5% of a portfolio that has met the 33% RPS target, but that is not clear from the statute.)

 

Why the CPUC’s RA Market Report gives the wrong reliability price metric

wecc_639_343_80

In its annual report on resource adequacy (RA) transactions, the CPUC reports the wrong result for the market price to be used for valuing capacity from the RA market data. The Commission’s decision issued in the PCIA rulemaking on establishing the CCA’s “exit fee” uses this value in error. In the CAISO energy and ancillary services markets, the market clearing price used to set the value of the energy portfolio is determined by the highest accepted bid in a single hour, and then averaged across all hours. In contrast, the average reported RA price in The 2017 Resource Adequacy Report incorrectly reports the average of all transactions. This would be equivalent to the CAISO reporting the average of all accepted bids, including those at zero or even negative, as the market clearing price.

The appropriate RA price metric is the highest RA transaction price for each month. This price represents the market equilibrium point at which a consumer is willing to pay the highest price given how low a price a supplier is willing to provide that quantity of the resource. (The other transactions are called “inframarginal” and such transactions are common in many markets.) In a full auction market, all transactions would clear at this single price, which is why the CAISO reports a single market clearing price for all transactions in a single hour. That should also be the case for the RA market price, except the time unit is a month.

Due to a lack of an auction for the moment, it is possible to manipulate the highest apparent price through a bilateral transaction. Instead, the Commission could choose a price near the highest point, but with sufficient market depth to mitigate potential manipulation. Using the 90th percentile transaction is one metric commonly used based on a quick survey of market price reports.