Tag Archives: transportation

Getting EVs where we need them in multi family and low-income communities

They seem to be everywhere. A pickup rolls up to a dark house in a storm during the Olympics and the house lights come on. (And even powers a product launch event when the power goes out!) The Governator throws lightning bolts like Zeus in a Super Bowl ad touting them. The top manufacturer is among the most valuable companies in the world and the CEO is a cultural icon. Electric vehicles (EVs) or cars are making a splash in the state.

The Ford F-150 Lightning pick up generated so much excitement last summer that it had to increase its initial roll out from 40,000 to 80,000 to 200,000 due to demand. General Motors answered with electric versions of the Silverado and Hummer. (Dodge is bringing up the rear with its Ram and Dakota pickups.)

Much of this has been spurred by California’s EV sales mandates that date back to 1990. The state now plans to phase out the sale of new cars and passenger trucks entirely by 2035, with 35% of sales by 2026. In the first quarter of 2022, EVs were 16% of new car sales.

While EVs look they will be here to stay, the question is where will drivers be able to charge up? That means recharging at home, at work, and on the road when needed. The majority of charging—70% to 80%–occurs at home or at work. Thanks to the abundance of California’s renewable energy, largely from solar power including from rooftops, the most advantageous time is in the middle of the day. The next big hurdle will be putting charging stations where they are needed, most valuable and accessible to those who don’t live in conventional single-family housing.

The state has about 80,000 public and shared private chargers, of which about 10% are DC “fast chargers” that can deliver 80% capacity in about 30 minutes. Yet we likely need 20 times more chargers that what we have today.

Multi-family housing is considered a prime target for additional chargers because of various constraints on tenants such as limitations on installing and owning a charging station and sharing of parking spaces. Community solar panels can be outfitted with charging stations that rely on the output of the panels.

California has a range of programs to provide incentives and subsidies for installing chargers. Funding for another 5,000 chargers was recently authorized. The state funds the California Electric Vehicle Infrastructure Project (CALeVIP) that provides direct incentives and works with local partners plan and install Level 2 and DC fast charging infrastructure. This program has about $200 million available. The program has 13 county and regional projects that contribute $6,000 and more for Level 2 chargers and often $80,000 for a DC fast charger. A minimum of 25% of funds are reserved for disadvantaged and low-income communities. In many cases, the programs are significantly oversubscribed with waiting lists, but the state plans to add enough funding for an additional 100,000 charging stations in the 2022-23 fiscal year, with $900 million over the next four years.

California’s electric utilities also fund charging projects, although those programs open and are quickly oversubscribed.

  • Southern California Edison manages the Charge Ready program with a focus on multi-family properties including mobilehome parks. The program offers both turn-key installation and rebates. SCE’s website provides tools for configuring a parking lot for charging.
  • San Diego Gas & Electric offered Power Your Drive to multi-family developments, with 255 locations currently. SDG&E has added the Power Your Drive Extension to add another 2,000 charging stations over the next two years. SDG&E will provide up to $12,000 for Level 2 chargers and additional maintenance funding.
  • Pacific Gas & Electric offered the EV Charge program in which PG&E will pay for, own, maintain and coordinate construction of infrastructure from the transformer to the parking space, as well as support independent ownership and operation. The program is not currently taking applications however. PG&E’s website offers other tools for assessing the costs and identifying vendors for installing chargers.
  • PG&E is launching a “bidirectional” EV charging pilot program with General Motors that will test whether EVs can be used to improve electric system reliability and resilience by using EVs as back up energy storage. The goal is to extend the program by the end of 2022. This new approach may provide EV owners with additional value beyond simply driving around town. PG&E also is setting up a similar pilot with Ford.
  • Most municipally-owned electric utilities offer rebates and incentives as well..

Community residents have a range of incentives available to them to purchase an EV.

  • The state offers $750 through the Clean Fuel Reward on the purchase of a new EV. .
  • California also offers the Clean Vehicle Rebate Project that offers $1,000 to $7,000 for buying or leasing a (non-Tesla) to households making less than $200,000 or individuals making less than $135,000. Savings depend on location and vehicle acquired.
  • Low-income households can apply for a state grant to purchase a new or used electric or hybrid vehicle, plus $2,000 for a home charging station, through the Clean Vehicle Assistance Program. The income standards are about 50% higher than those establishing eligibility for the CARE utility rate discount. The average grant is about $5,000.
  • The federal government offers a tax credit of up to $7,500 depending on the make and model of vehicle.
  • Car owners also can scrap their gasoline-fueled cars for $1,000 to $1,500, depending on household income.
  • Several counties, including San Diego and Sonoma, have offered EV purchase incentives to county residents. Those programs open and fill fairly quickly.

The difference between these EVs coming down the road (yes, that’s a pun) and the current models is akin to the difference between flip phones and smart phones. One is a single function communication device, and we use the latter to manage our lives. The marketing of EVs could shift course to emphasize these added benefits that are not possible with a conventional vehicle. We can expect a similar transformation in how we view energy and transportation as the communication and information revolution.

PG&E takes a bold step on enabling EV back up power, but questions remain

PG&E made exciting announcements about partnerships with GM and Ford last week to test using electric vehicles (EVs) for backup power for residential customers. (Ford also announced an initiative to create an open source charging standard.) PG&E also announced an initiative to install circuit breakers that facilitate use of onsite backup power. PG&E is commended for stepping forward to align its corporate strategy with the impending technology wave that could increase consumer energy independence.

I wrote about the promise of EVs in this role (“Electric vehicles as the next smartphone”) when I was struck by Ford’s F-150 Lightning ads last summer and how the consumer segment that buys pickups isn’t what we usually think of as the “EV crowd.” These initiatives could be game changers.

That said, several questions arise about PG&E’s game plan and whether the utility is still planning to hold customers captive:

  • How does PG&E plan to recover the costs for what are “beyond the meter” devices that typically is outside of what’s allowed? And how are the risks in these investments to be shared between shareholders and ratepayers? Will PG&E get an “authorized” rate of return with default assurances of costs being approved for recovery from ratepayers? How will PG&E be given appropriate incentives on making timely investments with appropriate risk, especially given the utility’s poor track record in acquiring renewable resources?
  • What will be the relationships between PG&E and the participating auto manufacturers? Will the manufacturers be required to partner with PG&E going forward? Will the manufacturers be foreclosed from offering products and services that would allow customers to exit PG&E’s system through self generation? Will PG&E close out other manufacturers from participating or set up other access barriers that prevent them from offering alternatives?
  • Delivering PG&E’s “personal microgrid backup power transfer meter device” is a good first step, but it requires disconnecting the solar panels to use, which means that it only support fossil fueled generators and grid-connected batteries. This device needs a switch for the solar panels as well. Further, it appears the device will only be available to customers who participate in PG&E’s Residential Generator and Battery Rebate Program. Can PG&E continue to offer this feature to vendors who offer only fossil-fueled generators? How will PG&E mitigate the local air pollution impacts from using fossil-fueled back up generators (BUGs) for extended periods? (California already has 8,000 megawatts of BUGs.)
  • How will these measures be integrated with the planned system reinforcements in PG&E’s 2022 Wildfire Mitigation Plan Update to reduce the costs of undergrounding lines? Will PG&E allow these back up sources and devices for customers who are interested in extended energy independence, particularly those who want to ride out a PSPS event?
  • How will community choice aggregators (CCAs) or other local governments participate? Will communities be able to independently push these options to achieve their climate action and adaptation plan (CAAP) goals?

Electric vehicles as the next smartphone

In 2006 a cell phone was portable phone that could send text messages. It was convenient but not transformative. No one seriously thought about dropping their landlines.

And then the iPhone arrived. Almost overnight consumers began to use it like their computer. They emailed, took pictures and sent them to their friends, then searched the web, then played complex games and watched videos. Social media exploded and multiple means of communicating and sharing proliferated. Landlines (and cable) started to disappear, and personal computer sales slowed. (And as a funny side effect, the younger generation seemed to quit talking on the phone.) The cell phone went from a means of one-on-one communication to a multi-faceted electronic tool that has become our pocket computer.

The U.S. population owning a smartphone has gone from 35% to 85% in the last decade. We could achieve similar penetration rates for electric vehicles (EVs) if we rethink and repackage how we market EVs to become our indispensable “energy management tool.” EVs can offer much more than conventional cars and we need to facilitate and market these advantages to sell them much faster.

EV pickups with spectacular features are about to be offered. These EVs may be a game changer for a different reason than what those focused on transportation policy think of–they offer households the opportunity for near complete energy independence. These pick ups have both enough storage capacity to power a house for several days and are designed to supply power to many other uses, not just driving. Combined with solar panels installed both at home and in business lots, the trucks can carry energy back and forth between locations. This has an added benefit of increasing reliability (local distribution outages are 15 times more likely than system levels ones) and resilience in the face of increasing extreme events.

This all can happen because cars are parked 90-95% of the time. That offers power source reliability in the same range as conventional generation, and the dispersion created by a portfolio of smaller sources further enhances that availability. Another important fact is that the total power capacity for autos on California’s road is over 2,000 gigawatts. Compared to California’s peak load of about 63 gigawatts, this is more than 30 times more capacity than we need. If we simply get to 20% penetration of EVs of which half have interconnective control abilities, we’ll have three times more capacity than we would need to meet our highest demands. There are other energy management issues, but solving them are feasible when we realize there will not be a real physical constraint.

Further, used EV batteries can be used as stationary storage, either in home or at renewable generation to mitigate transmission investments. EVs can transport energy between work and home from solar panels.

The difference between these EVs and the current models is akin to the difference between flip phones and smart phones. One is a single function device and the we use the latter to manage our lives. The marketing of EVs should shift course to emphasize these added benefits that are not possible with a conventional vehicle. The barriers are not technological, but only regulatory (from battery warranties and utility interconnection rules).

As part of this EV marketing focus, automakers should follow two strategies, both drawn from smart phones. The first is that EV pick ups should be leased as a means of keeping model features current. It facilitates rolling out industry standards quickly (like installing the latest Android update) and adding other yet-more attractive features. It also allows for more environmentally-friendly disposal of obsolete EVs. Materials can be more easily recycled and batteries no longer usable for driving (generally below 70% capacity) can be repurposed for stand-alone storage.

The second is to offer add on services. Smart phone companies have media streaming, data management and all sorts of other features beyond simple communication. Automakers can offer demand management to lower, or even eliminate, utility bills and appliance and space conditioning management placed onboard so a homeowner need not install a separate system that is not easily updated.

Drawing too many conclusions about electric vehicles from an obsolete data set

The Energy Institute at Haas at the University of California published a study allegedly showing that electric vehicles are driven about only one-third of the average standard car in California. I responded with a response on the blog.

Catherine Wolfram writes, “But, we do not see any detectable changes in our results from 2014 to 2017, and some of the same factors were at play over this time period. This makes us think that newer data might not be dramatically different, but we don’t know.“

A recent study likely is delivering a biased estimate of future EV use. The timing of this study reminds me of trying to analyze cell phone use in the mid-2000s. Now household land lines are largely obsolete, and we use phones even more than we did then. The period used for the analysis was during a dramatically changing period more akin to solar panel evolution just before and after 2010, before panels were ubiquitous. We can see this evolution here for example. Comparing the Nissan Leaf, we can see that the range has increased 50% between the 2018 and 2021 models.

The primary reason why this data set is seeing such low mileage is because is almost certain that the vast majority of the households in the survey also have a standard ICE vehicle that they use for their extended trips. There were few or no remote fast charge stations during that time and even Tesla’s had limited range in comparison. In addition, it’s almost certain that EV households were concentrated in urban households that have a comparatively low VMT. (Otherwise, why do studies show that these same neighborhoods have low GHG emissions on average?) Only about one-third of VMT is associated with commuting, another third with errands and tasks and a third with travel. There were few if any SUV EVs that would be more likely to be used for errands, and EVs have been smaller vehicles until recently.

As for copurchased solar panel installation, these earlier studies found that 40% or more of EV owners have solar panels, and solar rooftop penetration has grown faster than EV adoption since these were done.

I’m also not sure that the paper has captured fully workplace and parking structure charging. The logistical challenges of gaining LCFS credits could be substantial enough for employers and municipalities to not bother. This assumption requires a closer analysis of which entities are actually claiming these credits.

A necessary refinement is to compare this data to the typical VMT for these types of households, and to compare the mileage for model types. Smaller commuter models average less annual VMT according to the California Energy Commission’s vehicle VMT data set derived from the DMV registration file and the Air Resources Board’s EMFAC model. The Energy Institute analysis arrives at the same findings that EV studies in the mid 1990s found with less robust technology. That should be a flag that something is amiss in the results.

Moving beyond the easy stuff: Mandates or pricing carbon?

figure-1

Meredith Fowlie at the Energy Institute at Haas posted a thought provoking (for economists) blog on whether economists should continue promoting pricing carbon emissions.

I see, however, that this question should be answered in the context of an evolving regulatory and technological process.

Originally, I argued for a broader role for cap & trade in the 2008 CARB AB32 Scoping Plan on behalf of EDF. Since then, I’ve come to believe that a carbon tax is probably preferable over cap & trade when we turn to economy wide strategies for administrative reasons. (California’s CATP is burdensome and loophole ridden.) That said, one of my prime objections at the time to the Scoping Plan was the high expense of mandated measures, and that it left the most expensive tasks to be solved by “the market” without giving the market the opportunity to gain the more efficient reductions.

Fast forward to today, and we face an interesting situation because the cost of renewables and supporting technologies have plummeted. It is possible that within the next five years solar, wind and storage will be less expensive than new fossil generation. (The rest of the nation is benefiting from California initial, if mismanaged, investment.) That makes the effective carbon price negative in the electricity sector. In this situation, I view RPS mandates as correcting a market failure where short term and long term prices do not and cannot converge due to a combination of capital investment requirements and regulatory interventions. The mandates will accelerate the retirement of fossil generation that is not being retired currently due to mispricing in the market. As it is, many areas of the country are on their way to nearly 100% renewable (or GHG-free) by 2040 or earlier.

But this and other mandates to date have not been consumer-facing. Renewables are filtered through the electric utility. Building and vehicle efficiency standards are imposed only on new products and the price changes get lost in all of the other features. Other measures are focused on industry-specific technologies and practices. The direct costs are all well hidden and consumers generally haven’t yet been asked to change their behavior or substantially change what they buy.

But that all would seem to change if we are to take the next step of gaining the much deeper GHG reductions that are required to achieve the more ambitious goals. Consumers will be asked to get out of their gas-fueled cars and choose either EVs or other transportation alternatives. And even more importantly, the heating, cooling, water heating and cooking in the existing building stock will have to be changed out and electrified. (Even the most optimistic forecasts for biogas supplies are only 40% of current fossil gas use.) Consumers will be presented more directly with the costs for those measures. Will they prefer to be told to take specific actions, to receive subsidies in return for higher taxes, or to be given more choice in return for higher direct energy use prices?

Misunderstanding the Green New Deal

gndbygeneration-img-1440x680

The media and the public appears to have confused the Green Party’s platform calling for 100% renewable energy by 2030 with the goals in the Joint Resolution for a Green New Deal introduced by Senator Edward Markey (D-MA) and Representative Alexandria Ocasio-Cortez (D-NY). The Joint Resolution calls for a “10-year national mobilization,” but contains no deadlines other than zero greenhouse-gas emissions by 2050, which is 30+ years from now. Given that we went from horse and buggies and wood stoves to widespread automobile use and electrification in 30 years at the beginning of the twentieth century, such a transformation doesn’t seem imposing.

Maybe time to look for High Speed Rail alternatives?

High speed rail (HSR) may not be the best means to moving people quickly from San Francisco to Los Angeles–it looks like a 20th century solution to a 21st century problem. I’ve written written about how electric vehicles will diminish the projected GHG emission reductions, and may be an effective alternative. Now comes a Chinese-designed super bus27chinabus01-master768 that can use the same I-5 lanes simultaneously with cars. (See the video in the link above.) The Dutch have developed a high-speed electric bus that also can use I-5 at little added cost.

And now comes word that the auction of greenhouse gas (GHG) allowances by the State fell well below forecasts. Due to how HSR is funded out of that allowance fund, HSR’s share will fall by 98% to $2.5 million. Given that the state still has not attracted any private investment, which is a necessity to make this go, it may be time to rethink solutions.