Tag Archives: electric vehicles

Drawing too many conclusions about electric vehicles from an obsolete data set

The Energy Institute at Haas at the University of California published a study allegedly showing that electric vehicles are driven about only one-third of the average standard car in California. I responded with a response on the blog.

Catherine Wolfram writes, “But, we do not see any detectable changes in our results from 2014 to 2017, and some of the same factors were at play over this time period. This makes us think that newer data might not be dramatically different, but we don’t know.“

A recent study likely is delivering a biased estimate of future EV use. The timing of this study reminds me of trying to analyze cell phone use in the mid-2000s. Now household land lines are largely obsolete, and we use phones even more than we did then. The period used for the analysis was during a dramatically changing period more akin to solar panel evolution just before and after 2010, before panels were ubiquitous. We can see this evolution here for example. Comparing the Nissan Leaf, we can see that the range has increased 50% between the 2018 and 2021 models.

The primary reason why this data set is seeing such low mileage is because is almost certain that the vast majority of the households in the survey also have a standard ICE vehicle that they use for their extended trips. There were few or no remote fast charge stations during that time and even Tesla’s had limited range in comparison. In addition, it’s almost certain that EV households were concentrated in urban households that have a comparatively low VMT. (Otherwise, why do studies show that these same neighborhoods have low GHG emissions on average?) Only about one-third of VMT is associated with commuting, another third with errands and tasks and a third with travel. There were few if any SUV EVs that would be more likely to be used for errands, and EVs have been smaller vehicles until recently.

As for copurchased solar panel installation, these earlier studies found that 40% or more of EV owners have solar panels, and solar rooftop penetration has grown faster than EV adoption since these were done.

I’m also not sure that the paper has captured fully workplace and parking structure charging. The logistical challenges of gaining LCFS credits could be substantial enough for employers and municipalities to not bother. This assumption requires a closer analysis of which entities are actually claiming these credits.

A necessary refinement is to compare this data to the typical VMT for these types of households, and to compare the mileage for model types. Smaller commuter models average less annual VMT according to the California Energy Commission’s vehicle VMT data set derived from the DMV registration file and the Air Resources Board’s EMFAC model. The Energy Institute analysis arrives at the same findings that EV studies in the mid 1990s found with less robust technology. That should be a flag that something is amiss in the results.

Charging with the sun…really!

MITSUBISHI MOTOR SALES OF AMERICA, INC. CYPRESS CHARGING STATION

Severin Borenstein at the University of California’s Energy Institute at Haas posted on whether a consumer buying an electric vehicle was charging it with power from renewables. I have been considering the issue of how our short-run electricity markets are incomplete and misleading. I posted this response on that blog:

As with many arguments that look quite cohesive, it is based on key unstated premises that if called into question undermine the conclusions. I would relabel the “correct” perspective as the “conventional” which assumes that the resources at the margin are defined by short-run operational decisions. This is the basic premise of the FERC-designed power market framework–somehow all of those small marginal energy increases eventually add up into one large new powerplant. This is the standard economic assumption that a series of “putty” transactions in the short term will evolve into a long term “clay” investment. (It’s all of those calculus assumptions about continuity that drive this.) This was questionable in 1998 as it became apparent that the capacity market would have to run separately from the energy market, and is now even more questionable as we replace fossil fuel with renewables.

I would call the fourth perspective as “dynamic”. From this perspective these short run marginal purchases on the CAISO are for balancing to meet current demand. As Marc Joseph pointed out, all of the new incremental demand is being met in a completely separate market that only uses the CAISO as a form of a day to day clearinghouse–the bilateral PPAs. No load serving entity is looking to the CAISO as their backstop resource source. Those long term PPAs are almost universally renewables–even in states without RPS standards. In addition, fossil fueled plants–coal and gas–are being retired and replaced by solar and wind, and that is an additional marginal resource not captured in the CAISO market.

So when a consumer buys a new EV, that added load is being met with renewables added to either meet new load or replace retired fossil. Because these renewables have zero operating costs, they don’t show up in the CAISO’s “marginal” resources for simple accounting reasons, not for fundamental economic reasons. And when that consumer also adds solar panels at the same time, those panels don’t show up at all in the CAISO transactions and are ignored under the conventional view.

There is an issue of resource balancing costs in the CAISO incurred by one type of resource versus another, but that cost is only a subcomponent of the overall true marginal cost from a dynamic perspective.

So how we view the difference between “putty” and “clay” increments is key to assessing whether a consumer is charging their EV with renewables or not.

Comment on “Renewables May Become the Netflix of the Energy Sector” | Greentech Media

The analogy to Netflix is fascinating. As GTM points out, Netflix started out competing with Blockbuster in video DVDs, but then spilled over into video streaming (BTW, a market that Enron famously thought it could corner in the last 1990s.) So Netflix is now competing with both cable and broadcast companies. One can see how renewables could jump out of just electric service to building space conditioning and water heating, and vehicle fueling. Tesla is already developing those options.

Source: Renewables May Become the Netflix of the Energy Sector | Greentech Media

A real game changer in EVs?

General Motors announced the new Chevy Bolt with a 200-mile range at $30,000 after federal incentives (and less with state incentives). This range works for most households as a primary car (versus a commuter with a 40-50 mile range) and it’s in the price range of many other alternatives.

The question is whether EVs are environmentally beneficial yet in the eastern U.S. Car technology may be getting ahead of the electricity grid.

Getting EV owners to participate in electricity storage

Is high speed rail the right answer for reducing GHG emissions?

I’m not the only one asking whether California’s High Speed Rail (HSR) project is the best way to reduce climate change risk. Dick Startz from UC Santa Barbara confirmed in the LA Times my observation that creating an electric vehicle through-way along I-5 probably can serve the same purpose for much less cost, while delivering GHG reductions much sooner.

As I pointed out, the HSR GHG reduction analysis incorrectly assumes that the mix of motor vehicles will remain gasoline-dominated past 2030. Even an updated analysis cited by HSR proponents ignores the likely penetration of non-hybrid EVs required to meet the state’s emission reduction goals (prepared in a different study by UC Berkeley–shouldn’t a university more fully coordinate it’s related research?) Shouldn’t the HSR Authority be coordinating it’s studies with the planning parameters being used by the Air Resources Board in preparing its GHG reduction plans? Other studies have shown the HSR is not particularly cost effective.

Widespread and effective charging networks are being developed that makes a high speed EV corridor feasible. Access to such a corridor might even encourage EV diffusion. As Startz writes, we should be looking for solutions from this century rather than the last.

 

Cheap energy storage may be parked in your garage

One of the key questions about how to bring in more renewables is how do we provide low-cost storage? Batteries can cost $350 per kilowatt (kW) and pumped storage somewhat lower. Maybe we should think about another potential storage source that will be very low cost: automobiles.

California has about 24 million autos. The average horsepower is about 190 HP which converts to about 140 kW. Let’s assume that an EV will have on average a 100 kW engine. Generally cars are parked about 90% of the time, which of course varies diurnally. A rough calculation shows that about 2,000 GW of EV capacity is available with EVs at 100% of the fleet. To get to 22 GW of storage, about 1% of the state’s automobile fleet would need to be connected as storage devices. That seems to be an attainable goal. Of course, it may not be possible for the local grid to accommodate 100 kW of charging and discharging and current charging technologies are limited to 3 to 19 kW. So assuming an average of a 5 kW capability, having 20% of the auto fleet connected would still provide the 22 GW of storage that we might expect will be required to fully integrate renewables.

The onboard storage largely would be free–there probably are some opportunity costs in lower charging periods that would have to be compensated. The only substantial costs would be in installing charging stations and incorporating smart charging/storage software. I suspect those are the order of tens of dollars per kW.

Differing views of the future? High speed rail vs electric vehicles

As I was driving back from Los Angeles to Davis, I thought about how convenient it would be to turn on an auto pilot that allowed us to lock into the train of cars up Highway 99. The only reason I really had to pay attention was due to the varying speeds of the traffic. But that future may be nearer than we might think. Google’s self-driving car is getting most of the press, but in fact there are many similar technologies already on the road. In fact, there’s been some concern that drivers are already pushing the limits on current controls, but collision avoidance devices may soon be standard equipment.

Which brings us to the question: How will high speed rail fare in a world with driverless electric cars? The high speed rail travel forecast appears to assume a similar mix of gasoline-fueled automobiles; in fact, the word “electric” isn’t even in the report. On the other hand, studies show that EV market share probably needs to reach 45% by 2030 to achieve an 80% reduction in GHG emissions by 2050. And the Air Resources Board is considering regulations to implement “fast refueling / battery exchange” that would make the LA-SF trip even easier in an EV. Given the shorter life of automobiles, we might expect that almost all of the highway trips are with EVs by 2045.

We’re left with the question of what are the true emission reductions from HSR in such a world? Are we building a project that’s truly useful life is less than a decade?

Identifying the barriers to transportation fuel diversity

Tim O’Connor of EDF writes about the benefits of transportation diversification at EDF’s California Dream 2.0. I think that fuel diversity is a useful objective, but achieving that will be difficult due to the network externalities inherent in transportation technologies. Gasoline and diesel vehicles became dominant because having single-fuel refueling networks is more cost effective for both vendors and customers, and reduce the search costs for drivers to find those stations. Think of how many fueling stations someone might have to pass to reach their particular energy source. Investing in a particular fuel requires a certain level of revenue. Note how many local gas stations have closed because they didn’t have enough sales.

For a more recent example, we can look at cell phone operating systems. Initially each manufacturer had their own system, but now virtually all phones are driven by two systems, Android and iOS, while Windows 8 keeps trying to make inroads.

We need to be very aware of the fueling network economics when pushing for new transportation energy sources. Investing in a system is as much a set of business decisions as a policy decision. One approach might be to focus on using particular fuels in a narrow set of sectors and discourage broad sector-wide use. Another might be to use a geographic focus and to set up means of interconnecting across those geographies.