Tag Archives: CCA

Why are we punishing customers for doing the right thing?

The saying goes “No good deed goes unpunished.” The California Public Utilities Commission seems to have taken that motto to heart recently, and stands ready to penalize yet another group of customers who answered the clarion call to help solve the state’s problems by radically altering the rules for solar rooftops. Here’s three case studies of recent CPUC actions that undermine incentives for customers to act in the future in response to state initiatives: (1) farmers who invested in response to price incentives, (2) communities that pursued renewables more assertively, and (3) customers who installed solar panels.

Agriculture: Farmers have responded to past time of use (TOU) rate incentives more consistently and enthusiastically than any other customer class. Instead of being rewarded for their consistency, their peak price periods shifted from the afternoon to the early evening. Growers face much more difficulty in avoiding pumping during that latter period.

Since TOU rates were introduced to agricultural customers in the late 1970s, growers have made significant operational changes in response to TOU differentials between peak and off-peak energy prices to minimize their on-peak consumption. These include significant investments in irrigation equipment, storage and conveyance infrastructure and labor deployment rescheduling. The results of these expenditures are illustrated in the figure below, which shows how agricultural loads compare with system-wide load on a peak summer weekday in 2015, contrasting hourly loads to the load at the coincident peak hour. Both the smaller and larger agricultural accounts perform better than a range of representative rate schedules. Most notably agriculture’s aggregate load shape on a summer weekday is inverted relative to system peak, i.e., the highest agricultural loads occur during the lowest system load periods, in contrast with other rate classes.

All other rate schedules shown in the graphic hit their annual peak on the same peak day within the then-applicable peak hours of noon to 6 p.m. In contrast, agriculture electricity demand is less than 80% of its annual peak during those high-load hours, with its daily peak falling outside the peak period. Agriculture’s avoidance of peak hours occurred during the summer agricultural growing season, which coincided with peak system demand—just as the Commission asked customers to do. The Commission could not ask for a better aggregate response to system needs; in contrast to the profiles for all of the other customer groups, agriculture has significantly contributed to shifting the peak to a lower cost evening period.

The significant changes in the peak period price timing and differential that the CPUC adopted increases uncertainty over whether large investments in high water-use efficiency microdrip systems – which typically cost $2,000 per acre–will be financially viable. Microdrip systems have been adopted widely by growers over the last several years—one recent study of tomato irrigation rates in Fresno County could not find any significant quantity of other types of irrigation systems. Such systems can be subject to blockages and leaks that are only detectable at start up in daylight. Growers were able to start overnight irrigation at 6 p.m. under the legacy TOU periods and avoid peak energy use. In addition, workers are able to end their day shortly after 6 p.m. and avoid nighttime accidents. Shifting that load out of the peak period will be much more difficult to do with the peak period ending after sunset.

Contrary to strong Commission direction to incent customers to avoid peak power usage, the shift in TOU periods has served to penalize, and reverse, the great strides the agricultural class has made benefiting the utility system over the last four decades.

Community choice aggregators: CCAs were created, among other reasons, to develop more renewable or “green” power. The state achieved its 2020 target of 33% in large part because of the efforts of CCAs fostered through offerings of 50% and 100% green power to retail customers. CCAs also have offered a range of innovative programs that go beyond the offerings of PG&E, SCE and SDG&E.

Nevertheless, the difficulty of reaching clean energy goals is created by the current structure of the PCIA. The PCIA varies inversely with the market prices in the market–as market prices rise, the PCIA charged to CCAs and direct access (DA) customers decreases. For these customers, their overall retail rate is largely hedged against variation and risk through this inverse relationship.

The portfolios of the incumbent utilities are dominated by long-term contracts with renewables and capital-intensive utility-owned generation. For example, PG&E is paying a risk premium of nearly 2 cents per kilowatt-hour for its investment in these resources. These portfolios are largely impervious to market price swings now, but at a significant cost. The PCIA passes along this hedge through the PCIA to CCAs and DA customers which discourages those latter customers from making their own long term investments. (I wrote earlier about how this mechanism discouraged investment in new capacity for reliability purposes to provide resource adequacy.)

The legacy utilities are not in a position to acquire new renewables–they are forecasting falling loads and decreasing customers as CCAs grow. So the state cannot look to those utilities to meet California’s ambitious goals–it must incentivize CCAs with that task. The CCAs are already game, with many of them offering much more aggressive “green power” options to their customers than PG&E, SCE or SDG&E.

But CCAs place themselves at greater financial risk under the current rules if they sign more long-term contracts. If market prices fall, they must bear the risk of overpaying for both the legacy utility’s portfolio and their own.

Solar net energy metered customers: Distributed solar generation installed under California’s net energy metering (NEM/NEMA) programs has mitigated and even eliminated load and demand growth in areas with established customers. This benefit supports protecting the investments that have been made by existing NEM/NEMA customers. Similarly, NEM/NEMA customers can displace investment in distribution assets. That distribution planners are not considering this impact appropriately is not an excuse for failing to value this benefit. For example, PG&E’s sales fell by 5% from 2010 to 2018 and other utilities had similar declines. Peak loads in the CAISO balancing authority reach their highest point in 2006 and the peak in August 2020 was 6% below that level.

Much of that decrease appears to have been driven by the installation of rooftop solar. The figure above illustrates the trends in CAISO peak loads in the set of top lines and the relationship to added NEM/NEMA installations in the lower corner. It also shows the CEC’s forecast from its 2005 Integrated Energy Policy Report as the top line. Prior to 2006, the CAISO peak was growing at annual rate of 0.97%; after 2006, peak loads have declined at a 0.28% trend. Over the same period, solar NEM capacity grew by over 9,200 megawatts. The correlation factor or “R-squared” between the decline in peak load after 2006 and the incremental NEM additions is 0.93, with 1.0 being perfect correlation. Based on these calculations, NEM capacity has deferred 6,500 megawatts of capacity additions over this period. Comparing the “extreme” 2020 peak to the average conditions load forecast from 2005, the load reduction is over 11,500 megawatts. The obvious conclusion is that these investments by NEM customers have saved all ratepayers both reliability and energy costs while delivering zero-carbon energy.

The CPUC now has before it a rulemaking in which the utilities and some ratepayer advocates are proposing to not only radically reduce the compensation to new NEM/NEMA customers but also to change the terms of the agreements for existing ones.

One of the key principles of providing financial stability is setting prices and rates for long-lived assets such as solar panels and generation plants at the economic value when the investment decision was made to reflect the full value of the assets that would have been acquired otherwise.  If that new resource had not been built, either a ratebased generation asset would have been constructed by the utility at a cost that would have been recovered over a standard 30-year period or more likely, additional PPAs would have been signed. Additionally, the utilities’ investments and procurement costs are not subject to retroactive ratemaking under the rule prohibiting such ratemaking and Public Utilities Code Section 728, thus protecting shareholders from any risk of future changes in state or Commission policies.

Utility customers who similarly invest in generation should be afforded at least the same assurances as the utilities with respect to protection from future Commission decisions that may diminish the value of those investments. Moreover, customers do not have the additional assurances of achieving a certain net income so they already face higher risks than utility shareholders for their investments.

Generators are almost universally afforded the ability to recover capital investments based on prices set for multiple years, and often the economic life of their assets. Utilities are able to put investments in ratebase to be recovered at a fixed rate of return plus depreciation over several decades. Third-party generators are able to sign fixed price contracts for 10, 20, and even 40 years. Some merchant generators may choose to sell only into the short-term “hourly” market, but those plants are not committed to selling whenever the CAISO demands so. Generators are only required to do so when they sign a PPA with an assured payment toward investment recovery.

Ratepayers who make investments that benefit all ratepayers over the long term should be offered tariffs that provide a reasonable assurance of recovery of those investments, similar to the PPAs offered to generators. Ratepayers should be able to gain the same assurances as generators who sign long-term PPAs, or even utilities that ratebase their generation assets, that they will not be forced to bear all of the risk of investing of clean self-generation. These ratepayers should have some assurance over the 20-plus year expected life of their generation investment.

How to increase renewables? Change the PCIA

California is pushing for an increase in renewable generation to power its electrification of buildings and the transportation sector. Yet the state maintains a policy that will impede reaching that goal–the power cost indifference adjustment (PCIA) rate discourages the rapidly growing community choice aggregators (CCAs) from investing directly in new renewable generation.

As I wrote recently, California’s PCIA rate charged as an exit fee on departed customers is distorting the electricity markets in a way that increases the risk of another energy crisis similar to the debacle in 2000 to 2001. An analysis of the California Independent System Operator markets shows that market manipulations similar to those that created that crisis likely led to the rolling blackouts last August. Unfortunately, the state’s energy agencies have chosen to look elsewhere for causes.

The even bigger problem of reaching clean energy goals is created by the current structure of the PCIA. The PCIA varies inversely with the market prices in the market–as market prices rise, the PCIA charged to CCAs and direct access (DA) customers decreases. For these customers, their overall retail rate is largely hedged against variation and risk through this inverse relationship.

The portfolios of the incumbent utilities, i.e., Pacific Gas and Electric, Southern California Edison and San Diego Gas and Electric, are dominated by long-term contracts with renewables and capital-intensive utility-owned generation. For example, PG&E is paying a risk premium of nearly 2 cents per kilowatt-hour for its investment in these resources. These portfolios are largely impervious to market price swings now, but at a significant cost. The PCIA passes along this hedge through the PCIA to CCAs and DA customers which discourages those latter customers from making their own long term investments. (I wrote earlier about how this mechanism discouraged investment in new capacity for reliability purposes to provide resource adequacy.)

The legacy utilities are not in a position to acquire new renewables–they are forecasting falling loads and decreasing customers as CCAs grow. So the state cannot look to those utilities to meet California’s ambitious goals–it must incentivize CCAs with that task. The CCAs are already game, with many of them offering much more aggressive “green power” options to their customers than PG&E, SCE or SDG&E.

But CCAs place themselves at greater financial risk under the current rules if they sign more long-term contracts. If market prices fall, they must bear the risk of overpaying for both the legacy utility’s portfolio and their own.

The best solution is to offer CCAs the opportunity to make a fixed or lump sum exit fee payment based on the market value of the legacy utility’s portfolio at the moment of departure. This would untie the PCIA from variations in the future market prices and CCAs would then be constructing a portfolio that hedges their own risks rather than relying on the implicit hedge embedded in the legacy utility’s portfolio. The legacy utilities also would have to manage their bundled customers’ portfolio without relying on the cross subsidy from departed customers to mitigate that risk.

The PCIA is heading California toward another energy crisis

The California ISO Department of Market Monitoring notes in its comments to the CPUC on proposals to address resource adequacy shortages during last August’s rolling blackouts that the number of fixed price contracts are decreasing. In DMM’s opinion, this leaves California’s market exposed to the potential for greater market manipulation. The diminishing tolling agreements and longer term contracts DMM observes is the result of the structure of the power cost indifference adjustment (PCIA) or “exit fee” for departed community choice aggregation (CCA) and direct access (DA) customers. The IOUs are left shedding contracts as their loads fall.

The PCIA is pegged to short run market prices (even more so with the true up feature added in 2019.) The PCIA mechanism works as a price hedge against the short term market values for assets for CCAs and suppresses the incentives for long-term contracts. This discourages CCAs from signing long-term agreements with renewables.

The PCIA acts as an almost perfect hedge on the retail price for departed load customers because an increase in the CAISO and capacity market prices lead to a commensurate decrease in the PCIA, so the overall retail rate remains the same regardless of where the market moves. The IOUs are all so long on their resources, that market price variation has a relatively small impact on their overall rates.

This situation is almost identical to the relationship of the competition transition charge (CTC) implemented during restructuring starting in 1998. Again, energy service providers (ESPs) have little incentive to hedge their portfolios because the CTC was tied directly to the CAISO/PX prices, so the CTC moved inversely with market prices. Only when the CAISO prices exceeded the average cost of the IOUs’ portfolios did the high prices become a problem for ESPs and their customers.

As in 1998, the solution is to have a fixed, upfront exit fee paid by departing customers that is not tied to variations in future market prices. (Commissioner Jesse Knight’s proposal along this line was rejected by the other commissioners.) By doing so, load serving entities (LSEs) will be left to hedging their own portfolios on their own basis. That will lead to LSEs signing more long term agreements of various kinds.

The alternative of forcing CCAs and ESP to sign fixed price contracts under the current PCIA structure forces them to bear the risk burden of both departed and bundled customers, and the IOUs are able to pass through the risks of their long term agreements through the PCIA.

California would be well service by the DMM to point out this inherent structural problem. We should learn from our previous errors.

CAISO doesn’t quite grasp what led to rolling blackouts

Steve Berberich, CEO of the California Independent System Operator, assessed for GTM  his views on the reasons for the rolling blackouts in the face of a record setting heat wave. He overlooked a key reason for the delay on capacity procurement (called “resource adequacy” or RA) and he demonstrated a lack of understanding of how renewables and batteries will integrate to provide peak capacity.

Berberich is unwilling to acknowledge that at least part of the RA procurement problem was created by CAISO’s unwillingness to step in as a residual buyer in the RA market, which then created resistance by the CCAs to putting the IOUs in that role. RA procurement was delayed at least a year due to CAISO’s reluctance. CAISO appears to be politically tone-deaf to the issues being raised by CCAs on system procurement.

He says that solar will have to be overbuilt to supply energy to batteries for peak load. But that is already the case with the NQC ELCC just a fraction of the installed solar and wind capacity. Renewable capacity above the ELCC is available to charge the batteries for later use. The only question then is how much energy is required from the batteries to support the peak load and is that coming from existing renewables fleet. The resource adequacy paradigm has changed (more akin to the old PNW hydro system) in which energy, not built capacity is becoming the constraint.

A cautionary tale to communities negotiating with energy project developers

The City of Davis signed a lease option agreement on March 24 with a start up solar development company headed by a former CEO of a large renewable firm. How the negotiation process reflected a lack of sufficient knowledge on the part of the City staff is instructive to other cities and counties about the need to be fully informed when a renewable project developer approaches them about land or power deals. In this case the City gave away the potential for gaining tens of millions of dollars.

The agreement was negotiated in a series of closed sessions starting December 17 and approved in a rush under the premise that the project faced an April 15 deadline for submitting its interconnection application to the California Independent System Operator (CAISO). The deal immediately unleashed a storm of outrage from many knowledgeable citizens (several who are appointed city commission members) and the City responded soon after with a press release and “Q&A” that did little to quell the uproar. Two City Councilmembers then wrote an additional defense of the deal. The City’s Utilities Commission voted 5-2 to recommend that the City Council rescind the agreement. A request to “cure and correct” under the Brown Act was then filed April 23 by a group of citizens (including me).

Ashley Feeney, City Assistant City Manager, claimed at the Utilities Commission special meeting April 22 that the BrightNight lease option agreement and term sheet have “favorable terms to the City.”  No doubt it’s favorable to the developer — a low-cost lease option and lease terms at the average rate for agricultural use for a multi-million dollar solar energy project with no strings attached. The staff’s naivete comes through a close reading of the entire agreement.

What are so many people missing that makes this project so favorable to the City as the Council and staff claim? While the process of signing the lease option agreement with the developer was (a) unnecessarily secretive, (b) precluded useful citizen input, and (c) likely violated state law in several ways— at its core, the agreement is simply a bad deal. The City either failed to carry out its due diligence, or was seriously misled by the developer, or both. As a result, the City likely gave away millions of dollars over the next 50 plus years, failed to guarantee any clean energy for the City and failed to protect the City fully at the end of the project life. While the City may desire local renewable power, the agreement lacks any real commitment to advance the City’s climate goals while gaining local benefits.

The agreement (1) underprices both the lease option and the lease prices relative the actual value to the developer, (2) lacks any guarantee of plant power being sold to Davis or VCEA, much less at favorable terms, (3) lacks appropriate protection that sufficient funds will be available to decommission the plant, and (4) forsakes opportunities for more valuable alternative uses for those parcels for at least the next five years.

The first of those misunderstandings was that there was, in fact, no need for the developer to have site control for the CAISO interconnection process.  Whatever developer’s “standard” practice is has no bearing on how and what the City should decide in its own interest. The CAISO interconnection process requires either (1) a $250,000 refundable deposit regardless of site control plus a $150,000 study deposit, if the project is submitting under the Cluster application which is due by April 15, or (2) with site control there is no deposit except the same $150,000 study deposit under the Independent Study Process and no deadline. In this case, the City has essentially gifted the developer $225,000 by providing site control at a steep discount. The developers appears to have exploited the City’s lack of knowledge about the interconnection process by conflating the two processes.

Instead the City should have priced the lease option to reflect the developer’s value, not the City’s. That means that handing over the site control was worth the avoided carrying cost of that deposit each year. With a standard rate of return of at least 10% on real estate investments, that amounts to $25,000 per year, which translates into $106 per acre.  In any case, the minimum opportunity cost to the City is either using it for annual row crop agriculture or reflecting the delay in other uses such as organic waste processing, both of which far exceed the $20 per acre in the lease option.

The City should have specified that the project sell output only to either the City or Valley Clean Energy Authority (VCEA) at a favorable price. The developer is now in the driver’s seat and can solicit bids from the entire range of utilities and load-serving entities such as PG&E, SMUD and other CCAs. This will make the cost of this power more expensive even if Davis or VCEA wins the power output. But now that the agreement has been executed, the City no longer has any leverage in either the lease terms or an energy sale to VCEA, because it cannot force the developer into an agreement.

The City could have specified that the output be wheeled to City accounts through PG&E’s RES-BCT tariff that is available to public agencies. A wholesale solar power contract for the project is unlikely to be much more than 5 cents per kilowatt-hour. In contrast, if the project was structured to take advantage of the the power savings under RES-BCT would amount to over 8 cents per kilowatt-hour—at least 60% higher. (At least 35 megawatts is still available for subscription.) This benefit amounts to over $1.2 million per year at current PG&E rates, compared to an expected annual lease payment under the current lease agreement ranging from $40,000 to $80,000. The gain in value over 50 years could be $52 million in nominal dollars or $21 million in net present value. That delivers an equivalent to a lease rate of $5,000 per acre, not $340 or less.

Even if the City did not use the power output, it should have negotiated a lease price based on either (1) the value of rezoned commercial and industrial land since the developer would have to get that zoning designation to develop its project elsewhere, or (2) the highest agricultural value (not the average for the county). For agricultural land, the value a City commissioner and orchard farmer has calculated is $1,688 to $2,250 per acre, or four to five times higher than the rate that the City negotiated based on a naïve calculation.

Further, the term sheet specifies that the developer pay the property taxes. However, the value of the parcels will not increase if the project is built prior to the 2025 because of the solar property exclusion in state law. The County will receive a short term boost in sales tax revenues from plant construction, but the City will not receive any share of that since its outside City boundaries. The City could have negotiated an in-lieu payment from the developer based on the added property value.

While the lease agreement pays lip service to the developer’s responsibility for decommissioning and disposing of the project at the end of its useful life, the term sheet has no provision prohibiting the developer from declaring bankruptcy for its limited liability corporation (LLC) and just walking away. Since the project will have no income at the end its life, and the entity owning the plant is legally separate from primary development firm (or its successor), the obvious step is to simply dissolve the LLC through a bankruptcy.  Such a step would leave the plant for the City to dispose of at significant expense (likely more than $1 million at today’s prices.)  This will wipe out half of the current lease revenues. That is the route that PG&E Corporation took in 2001 when its subsidiary, Pacific Gas and Electric Company, declared bankruptcy in 2001, leaving the bill of the energy crisis to ratepayers instead of shareholders. The City failed to require a surety bond that would cover those costs. Such bonds or other endowments are typical for projects of this type.

An additional consideration that appears to have been ignored is that The City has been looking at other higher value uses of the site such as organics waste disposal or habitat preservation and restoration. These have been under study at several City Commissions, but now those efforts have been aborted.

Finally, some of have defended maintaining the agreement because abrogating it could expose the City to significant legal liability. The developer at this time cannot sue for more than its demonstrated losses, and since it does not yet have a power purchase agreement, it has no future income stream to point to. At most, the liability is the $150,000 deposit with the CAISO  plus a few thousand dollars expended preparing and submitting the interconnection application (which in fact can be remediated with a $250,000 refundable deposit).

The agreement still faces several hurdles including whether the process violated California’s Brown Act, approval with any Yolo County zoning changes, conformance between the agreement and CAISO interconnection requirements, and winning with an RFO bid.

Even if the City believes that it is compelled to go forward with this agreement, it should admit that it made a series of serious mistakes and needs to review its practices and processes that caused this mess. Unfortunately, it does not seem that the City could have done any worse in these negotiations.

Richard McCann testified at the California Public Utilities Commission on behalf of Santa Clara and San Joaquin counties about their RES-BCT projects, and analyzed solar net metering arrangements for agricultural and mobilehome park clients. He evaluated the fiscal impacts of solar projects on San Luis Obispo, San Benito and Inyo counties, and projected the costs of the Desert Renewable Energy Conservation Plan for the California Energy Commission. He is a member of the Natural Resources Commission, former member of the Utilities Commission, and was recently recognized with  the City’s 2020 Environmental Recognition Award for serving on the Technical Advisory Subcommittee of the Community Choice Energy Advisory Committee, leading to formation of Valley Clean Energy.

Should CCAs accept a slice of Diablo Canyon power?

The northern California community choice aggregators (CCAs) are considering a offer from PG&E to allocate to each CCA a proportionate share of parts of its portfolio, including the Diablo Canyon nuclear generation station. Many CCA boards are hearing from anti-nuclear activists to deny this offer, both for moral reasons and the belief that such a rejection will somehow pressure PG&E financially. The first set of concern is beyond my professional expertise, but their reasoning on the economic and regulatory issues is incorrect.

  • CCAs buy a substantial portion of their generation (the majority for many of them) from the California Independent System Operator (CAISO) energy markets. PG&E schedules Diablo Canyon into those CAISO markets and under the current CAISO tariffs, nuclear generation is a “must take” resource that the CAISO can’t turn back. So the entire output of Diablo Canyon is scheduled into the CAISO market (without any bidding process), PG&E is paid the market clearing price (MCP) for that Diablo power, and the CCAs buy that mix of nuclear power at the MCP. There is no discretion for either the CAISO or the CCAs in taking excess power from Diablo. There is no “lifeline” for Diablo that the CCAs have any control over under current legal and regulatory parameters.
  • CCAs already pay for a proportionate share of Diablo Canyon equal to the CCAs share of overall load. That payment is broken into two parts (and maybe a third): 1) the purchase of energy from the CAISO at the MCP and 2) the stranded capital and operating costs above the MCP in the PCIA. (CCAs also may be paying for a share of the resource adequacy, but I haven’t thought through that one.) Thus, if the CCAs receive credit for the energy that they are already paying for, the energy portion essentially comes as “free”. In addition, because CCAs currently pay for the remaining share of Diablo costs, but get no energy credit for that in the PCIA calculation, then that credit is in the PCIA is also “free”. In addition, the CCAs gain credit for Diablo’s GHG-free generation (as recognized in the Air Resources Board GHG allowance program) as LSE’s for no extra cost, or for “free.” The bottom line is when the CCAs gain credit for products that they are already paying for, receipt of those products is for “free.”
  • Accepting this deal will not solve ALL of the CCAs problems, but that’s a false goal. That was never the intent. It does however give the CCAs a respite to get through the period until Diablo retires. One needs to recognize that this provides some of the needed relief.
  • Finally, there’s never any certainty over any large deal. Uncertainty should not freeze decision making. The uncertainty about the PCIA going forward is equally large and perhaps offsetting. The risks should be identified, discussed, considered and addressed to the extent possible. But that’s different than simply nixing the deal without addressing the other large risk. Naively believing that Diablo can be closed in short order (especially with the COVID crisis) is not a true risk management strategy.

From these points, we can come to these conclusions:

  1. Whether the CCAs accept or reject the nuclear offer has NO impact on PG&E’s revenue stream. The decisions that the CCAs face are entirely about whether the CCAs can lower their costs and gain some additional GHG reduction credits that they are already paying for (in other words, reduce their subsidies of bundled customers.) Nothing that the CCAs decide will affect the closure date of Diablo. If the CCAs reject the allocations, it will simply be business as usual to the full closures in 2025. Any other interpretation doesn’t reflect the current regulatory environment at the CPUC which are unlikely to change (and even that is unknown) until enough commissioners’ five-year terms roll over.
  2. The system can only be changed by legislative and regulatory action. That means that the CCAs must make the most prudent financial decisions within the current context rather than making a purely symbolic gesture that is financially adverse and will do nothing to change the BAU practice. A wise decision would consider what is the true impact of the action on
  3. Finally, early closure of Diablo will NOT remove the invested capital cost from PG&E’s ratebase, which is what drives the PCIA. After the plant is closed, activists will ALSO have to show that the INVESTMENT in the plant was imprudent and should not have been allowed. Given the long history on decisions and settlements in Diablo investment costs and the inclusion of recovery of Diablo costs in both AB1890 and AB1X at the beginning and end of the energy crisis, that is an impossible task. Only a constitutional amendment through the initiative process could possibly lead to such an action, and even that would have to survive a court challenge that probably would push past 2024.

I want to finish with what I think is a very important point that has been overlooked by the activists: The effort to close Diablo Canyon has won. Activists might not like the timeline of that victory, but it is a victory nevertheless that looked unachievable prior to 2016. It’s worthwhile considering whether the added effort for what will be for a variety of reasons little gain is an important question to answer.

Note that Diablo Canyon is already scheduled for closure in 2024 and 2025. A proceeding to either reopen A.16-08-006 or to open a new rulemaking or application would probably take close to a year, so the proceeding probably wouldn’t open until almost 2021. The actual proceeding would take up to a year, so now we’re to 2022 before an actual decision. PG&E would have to take up to a year to plan the closure at that point, which then takes us to 2023. So at best the plant closes a year earlier than currently scheduled. In addition, PG&E still receives the full payments for its investments and there’s likely no capital additions avoided by the early closure, so the cost savings would be minimal.

We’ve already paid for Diablo Canyon

As I wrote last week, PG&E is proposing that a share of Diablo Canyon nuclear plant output be allocated to community choice aggregators (CCAs) as part of the resolution of issues related to the Integrated Resource Plan (IRP), Resource Adequacy (RA) and Power Charge Indifference Adjustment (PCIA) rulemakings. While the allocation makes sense for CCAs, it does not solve the problem that PG&E ratepayers are paying for Diablo Canyon twice.

In reviewing the second proposed settlement on PG&E costs in 1994, we took a detailed look at PG&E’s costs and revenues at Diablo. Our analysis revealed a shocking finding.

Diablo Canyon was infamous for increasing in cost by more than ten-fold from the initial investment to coming on line. PG&E and ratepayer groups fought over whether to allow $2.3 billion dollars.  The compromise in 1988 was to essentially shift the risk of cost recovery from ratepayers to PG&E through a power purchase agreement modeled on the Interim Standard Offer Number 4 contract offered to qualifying facilities (but suspended as oversubscribed in 1985).

However, the contract terms were so favorable and rich to PG&E, that Diablo costs negatively impacted overall retail rates. These costs were a key contributing factor that caused industrial customers to push for deregulation and restructuring. As an interim solution in 1995 in anticipation of forthcoming restructuring, PG&E and ratepayer groups arrived at a new settlement that moved Diablo Canyon back into PG&E’s regulated ratebase, earning the utilities allowed return on capital. PG&E was allowed to keep 100% of profit collected between 1988 and 1995. The subsequent 1996 settlement made some adjustments but arrived at essentially the same result. (See Decision 97-05-088.)

While PG&E had borne the risks for seven years, that was during the plant startup and its earliest years of operation.  As we’ve seen with San Onofre NGS and other nuclear plants, operational reliability is most at risk late in the life of the plant. PG&E’s originally took on the risk of recovering its entire investment over the entire life of the plant.  The 1995 settlement transferred the risk for recovering costs over the remaining life of the plant back to ratepayers. In addition, PG&E was allowed to roll into rate base the disputed $2.3 billion. This shifted cost recovery back to the standard rate of depreciation over the 40 year life of the NRC license. In other words, PG&E had done an end-run on the original 1988 settlement AND got to keep the excess profits.

The fact that PG&E accelerated its investment recovery over the first seven years and then shifted recovery risk to ratepayers implies that PG&E should be allowed to recover only the amount that it would have earned at a regulated return under the original 1988 settlement. This is equal to the discounted net present value of the net income earned by Diablo Canyon, over both the periods of the 1988 (PPA) and 1995 settlements.

In 1996, we calculated what PG&E should be allowed to recover in the settlement given this premise.  We assumed that PG&E would be allowed to recover the disputed $2.3 billion because it had taken on that risk in 1988, but the net income stream should be discounted at the historic allowed rate of return over the seven year period.  Based on these assumptions, PG&E had recovered its entire $7.7 billion investment by October 1997, just prior to the opening of the restructured market in March 1998.  In other words, PG&E shareholders were already made whole by 1998 as the cost recovery for Diablo was shifted back to ratepayers.  Instead the settlement agreement has caused ratepayers to pay twice for Diablo Canyon.

PG&E has made annual capital additions to continue operation at Diablo Canyon since then and a regulated return is allowed under the regulatory compact.  Nevertheless, the correct method for analyzing the potential loss to PG&E shareholders from closing Diablo is to first subtract $5.1 billion from the plant in service, reducing the current ratebase to capital additions incurred since 1998. This would reduces the sunk costs that are to be recovered in rates from $31 to $3 per megawatt-hour.

Note that PG&E shareholders and bondholders have earned a weighted return of approximately 10% annually on this $5.1 billion since 1998. The compounded present value of that excess return was $18.1 billion by 2014 earned by PG&E.

CCAs don’t undermine their mission by taking a share of Diablo Canyon

Northern California community choice aggregators (CCAs) are considering whether to accept an offer from PG&E to allocate a proportionate share of its “large carbon-free” generation as a credit against the power charge indifference adjustment (PCIA) exit fee.  The allocation would include a share of Diablo Canyon power. The allocation for 2019 and 2020; an extension of this allocation is being discussed on the PCIA rulemaking.

The proposal faces opposition from anti-nuclear and local community activists who point to the policy adopted by many CCAs not to accept any nuclear power in their portfolios. However, this opposition is misguided for several reasons, some of which are discussed in this East Bay Community Energy staff report.

  • The CCAs already receive and pay for nuclear generation as part of the mix of “unspecified” power that the CCAs buy through the California Independent System Operator (CAISO). The entire cost of Diablo Canyon is included in the Total Portfolio Cost used to calculate the PCIA. The CCAs receive a “market value” credit against this generation, but the excess cost of recovering the investment in Diablo Canyon (for which PG&E is receiving double payment based on calculations I made in 1996) is recovered through the PCIA. The CCAs can either continue to pay for Diablo through the PCIA without receiving any direct benefits, or they can at least gain some benefits and potentially lower their overall costs. (CCAs need to be looking at their TOTAL generation costs, not just their individual portfolio, when resource planning.)
  • Diablo Canyon is already scheduled to close Unit 1 in 2024 and Unit 2 in 2025 after a contentious proceeding. This allocation is unlikely to change this decision as PG&E has said that the relicensed plant would cost in excess of $100 per megawatt-hour, well in excess of its going market value. I have written extensively here about how costly nuclear power has been and has yet to show that it can reduce those costs. Unless the situation changes significantly, Diablo Canyon will close then.
  • Given that Diablo is already scheduled for closure, the California Public Utilities Commission (CPUC) is unlikely to revisit this decision. But even so, a decision to either reopen A.16-08-006 or to open a new rulemaking or application would probably take close to a year, so the proceeding probably would not open until almost 2021. The actual proceeding would take up to a year, so now we are to 2022 before an actual decision. PG&E would have to take up to a year to plan the closure at that point, which then takes us to 2023. So at best the plant closes a year earlier than currently scheduled. In addition, PG&E still receives the full payments for its investments and there is likely no capital additions avoided by the early closure, so the cost savings would be minimal.

Microgrids could cost 10% of undergrounding PG&E’s wires

One proposed solution to reducing wildfire risk is for PG&E to put its grid underground. There are a number of problems with undergrounding including increased maintenance costs, seismic and flooding risks, and problems with excessive heat (including exploding underground vaults). But ignoring those issues, the costs could be exorbitant-greater than anyone has really considered. An alternative is shifting rural service to microgrids. A high-level estimate shows that using microgrids instead could cost less than 10% of undergrounding the lines in regions at risk. The CPUC is considering a policy shift to promote this type of solution and has new rulemaking on promoting microgrids.

We can put this in context by estimating costs from PG&E’s data provided in its 2020 General Rate Case, and comparing that to its total revenue requirements. That will give us an estimate of the rate increase needed to fund this effort.

PG&E has about 107,000 miles of distribution voltage wires and 18,500 in transmission lines. PG&E listed 25,000 miles of distribution lines being in wildfire risk zones. The the risk is proportionate for transmission this is another 4,300 miles. PG&E has estimated that it would cost $3 million per mile to underground (and ignoring the higher maintenance and replacement costs). And undergrounding transmission can cost as much as $80 million per mile. Using estimates provided to the CAISO and picking the midpoint cost adder of four to ten times for undergrounding, we can estimate $25 million per mile for transmission is reasonable. Based on these estimates it would cost $75 billion to underground distribution and $108 billion for transmission, for a total cost of $183 billion. Using PG&E’s current cost of capital, that translates into annual revenue requirement of $9.1 billion.

PG&E’s overall annual revenue requirement are currently about $14 billion and PG&E has asked for increases that could add another $3 billion. Adding $9.1 billion would add two-thirds (~67%) to PG&E’s overall rates that include both distribution and generation. It would double distribution rates.

This begs two questions:

  1. Is this worth doing to protect properties in the affected urban-wildlands interface (UWI)?
  2. Is there a less expensive option that can achieve the same objective?

On the first question, if we look the assessed property value in the 15 counties most likely to be at risk (which includes substantial amounts of land outside the UWI), the total assessed value is $462 billion. In other words, we would be spending 16% of the value of the property being protected. The annual revenue required would increase property taxed by over 250%, going from 0.77% to 2.0%.

Which turns us to the second question. If we assume that the load share is proportionate to the share of lines at risk, PG&E serves about 18,500 GWh in those areas. The equivalent cost per unit for undergrounding would be $480 per MWh.

The average cost for a microgrid in California based on a 2018 CEC study is $3.5 million per megawatt. That translates to $60 per MWh for a typical load factor. In other words a microgrid could cost one-eighth of undergrounding. The total equivalent cost compared to the undergrounding scenario would be $13 billion. This translates to an 8% increase in PG&E rates.

To what extent should we pursue undergrounding lines versus shifting to microgrid alternatives in the WUI areas? Should we encourage energy independence for these customers if they are on microgrids? How should we share these costs–should locals pay or should they be spread over the entire customer base? Who should own these microgrids: PG&E or CCAs or a local government?

 

 

 

 

End the fiction of regulatory oversight of California’s generation

1542383922472

M.Cubed is the only firm willing to sign the non-disclosure agreements (NDA) that allow us to review the investor-owned utilities’ (IOUs) generation portfolio data on behalf of outside intervenors, such as the community choice aggregators (CCAs). Even the direct access (DA) customers who constitute about a quarter of California’s industrial load are represented by a firm that is unwilling to sign the NDAs. This situation places departed load customers, and in fact all customers, at a distinct disadvantage when trying to regulate the actions of the IOUs. It is simply impossible for a single small firm to scrutinize all of the filings and data from the IOUs. (Not to mention that one, SDG&E, gets a complete free pass for now as that it has no CCAs.)

This situation has arisen because the NDAs require that the “reviewing representatives” not be in a position to advise market participants, such as CCAs or energy service providers (ESPs) that sell to DA customers, on procurement decisions. This is an outgrowth of AB 57 in 2002, a state law passed to bring IOUs back into the generation market after the collapse of restructuring in 2001. That law was intended to the balance of power to the IOUs away from generators for procurement purposes. Now it puts the IOUs at a competitive advantage against other load serving entities (LSEs) such as CCAs and ESPs, and even bundled customers.

This imbalance has arisen for several insurmountable reasons:

  • No firm can build its business on serving only to review IOU filings without offering other procurement consulting services to clients.
  • It is difficult to build expertise for reviewing IOU filings without participating in procurement services for other LSEs or resource providers. (I am uniquely situated by the consulting work I did for the CEC on assessing generation technology costs for over a decade.)
  • CPUC staff similarly lacks the expertise for many of the same reasons, and are relatively ineffective at these reviews. The CPUC is further limited by its ability to recruit sufficient qualified staff for a variety of reasons.

If California wants to rein in the misbehavior by IOUs (such as what I’ve documented on past procurement and shareholder returns earlier), then we have two options to address this problem going forward:

  1. Transform at least the power generation management side of the IOUs into publicly owned entities with more transparent management review.
  2. End the annual review and setting of PCIA and CTC rates by establishing one-time prepayment amounts. By prepaying or setting a fixed annual amount, the impact of accounting maneuvers are diminished substantially, and since IOUs can no longer shift portfolio management risks to departed load customers, the IOUs more directly face the competitive pressures that should make them more efficient managers.