Tag Archives: environmental economics

Per Capita: Climate needs more than just good will

I wrote this guest column in the Davis Enterprise about the City’s Climate Action and Adaptation Plan. (Thank you John Mott-Smith for extending the privilege.)

Dear Readers, the guest column below was written by Richard McCann, a Davis resident and expert on energy and climate action plans.

————

The city of Davis is considering its first update of its Climate Action and Adaptation Plan since 2010 with a 2020-2040 Plan. The city plans to update the CAAP every couple of years to reflect changing conditions, technologies, financing options, laws and regulations.

The plan does not and cannot achieve a total reduction in greenhouse gas emissions simply because we do not control all of the emission sources — almost three-quarters of our emissions are from vehicles that are largely regulated by state and federal laws. But it does lay out a means to putting a serious dent in the overall amount. 

The CAAP offers a promising future and accepts that we have to protect ourselves as the climate worsens. Among the many benefits we can look forward to are avoiding volatile gas prices while driving cleaner, quieter cars; faster and more controllable cooking while eliminating toxic indoor air; and air conditioning and heating without having to make two investments while paying less.

To better adapt, we’ll have a greener landscape, filtered air for rental homes, and community shelter hubs powered by microgrids to ride out more frequent extreme weather.

We have already seen that adding solar panels raises the value of a house by as much as $4,000 per installed kilowatt (so a 5 kilowatt system adds $20,000). We can expect similar increases in home values with these new technologies due to the future savings, safety and convenience. 

Several state and federal laws and rules foretell what is coming. By 2045 California aims to be at zero net GHG emissions. That will require retiring all of the residential and commercial gas distribution lines. PG&E has already started a program to phase out its lines. A change in state rules will remove from the market several large natural gas appliances such as furnaces by 2030.

In addition, PG&E will no longer offer subsidies to developers to install gas lines to new homes starting next year. The U.S. Environmental Protection Agency appears poised to push further the use of electric appliances in areas with poor air quality such the Sacramento Valley. (Renewable gas and hydrogen will be too expensive and there won’t be enough to go around.)

Without sales to new customers or for replaced furnaces, the cost of maintaining the gas system will rise substantially so switching to electricity for cooking and water heating will save even more money. The CAAP anticipates this transition by having residents begin switching earlier. 

In addition, the recently enacted federal Inflation Reduction Act offers between $400 and $800 billion into funding these types of changes. The California Energy Commission’s budget for this year went from $1 billion to $10 billion to finance these transitions. The CAAP lays out a process for acquiring these financial sources for Davis and its residents. 

That said, some have objected to the CAAP as being too draconian and infringing on personal choices. The fact is that we are now in the midst of a climate emergency — the City Council endorsed this concern with a declaration in 2019. We’re already behind schedule to head off the worst of the threatening impacts. 

We won’t be able to rely solely on voluntary actions to achieve the reductions we need. That the CAAP has to include these actions proves that people have not been acting on their own despite a decade of cajoling since the last CAAP. While we’ve been successful at encouraging voluntary compliance with easy tasks like recycling, we’ve used mandatory permitting requirements to gain compliance with various building standards including energy efficiency measures. (These are usually enforced at point-of-sale of a house.)

We have a choice of mandatory ordinances, incentives through taxes or fees, and subsidies from grants and funds — voluntary just won’t deliver what’s needed. We might be able to financially help those least able to afford changing stoves, heaters or cars, but those funds will be limited. The ability to raise taxes or fees is restricted due to various provisions in the state’s constitution. So we are left with mandatory measures, applied at the most opportune moments. 

Switching to electricity for cooking and water heating may involve some costs, some or most of which will be offset by lower energy costs (especially as gas rates go up.) If you have an air conditioner, you’re likely already set up for a heat pump to replace your furnace — it’s a simple swap. Even so, you can avoid some costs by using a 120-volt induction cooktop instead of 240 volts, and installing a circuit-sharing plug or breaker for large loads to avoid panel upgrades. 

The CAAP will be fleshed out and evolve for at least the next decade. Change is coming and will be inevitable given the dire situation. But this change gives us opportunities to clean our environment and make our city more livable.  

That California owns its water doesn’t mean that the state can just take it back without paying for it

The researchers at the UC Davis Center for Watershed Sciences wrote an insightful blog on “Considerations for Developing An Environmental Water Right in California.” However one passage jumped out at me that has troubling economic implications:

The potential for abuse is particularly troubling when the State is using public funds to buy water, which technically belongs to the people of the state and which the State can already regulate to achieve the same aims.

It’s not helpful to refer to the fiction that the somehow the state can award water rights, on which entities make economic investments based on private uses, and then turn around and try to claim that the state can just take those rights back without any compensation. That’s a foolish perspective that will lead mispricing and misallocation of water use. It is reasonable to assert that the state can claim a right of first refusal on transactions or even that a rights holder can’t withhold sale of a water right to the state, but in either case, the rights holder does receive compensation. The state’s right can easily be interpreted as that of a landlord who has a long term lease agreement with a tenant, and the tenancy agreement can be terminated with compensation to that tenant.

California could buy back GHG allowances cost-effectively

California is concerned that entities that emit greenhouse gases (GHG) have accrued a too-large bank of allowances through the Air Resources Board (CARB) cap-and-trade program (CATP.) The excess is estimated at 321 million allowances (one allowance equals one metric tonne of carbon dioxide equivalent (CO2e) emissions). This is more an a year’s worth of allowances. About half of these were issued for free to eligible energy utilities and energy-intensive trade-exposed (EITE) companies.

The state could consider purchasing back a certain portion to reduce the backlog and increase the market price so as to further encourage reductions in GHG emissions by retiring those allowances. Prices in the last allowance auction ranged from $28 to $34 per allowance/tonne. If California bought back half or 160 million allowances at those prices, it would cost $4.5 to $5.5 billion. That would create effectively a reduction of 160 million tonnes in future GHG emissions.

That should be compared to the various benchmarks for the benefits and costs of reducing GHG emissions. The currently accepted social cost of GHG emissions developed by the U.S. Environmental Protection Agency (US EPA) is ranges from $50 to $150 per tonne in 2030 (and recent studies have estimated that this is too low.) That would create a net social benefit from $2.5 to $19.6 billion.

CARB’s AB 32 Scoping Plan update estimates the average cost of reductions without the CATP to be $70 per tonne in 2030. The incremental avoided costs of the CATP are estimated at $220 per tonne. The net avoided costs on this basis would range from $5.7 to $30.4 billion.

Deciding if solar installation is suboptimal requires that the initial premises be specified correctly

A recent article “Heterogeneous Solar Capacity Benefits, Appropriability, and the Costs of Suboptimal Siting” in the Journal of the Association of Environmental and Resource Economists finds that distributed solar (e.g., rooftop solar) is not being installed a manner that “optimally” mitigates air pollution damages from electricity generation across the U.S. Unfortunately the paper is built on two premises that do not reflect the reality of available options and appropriate pricing signals.

First, the authors appear to be relying on the premise that sufficient solar, grid-scale or distributed, can be installed cost-effectively across the U.S. While the paper includes geographic variations in generation per installed kilowatt of capacity, it says nothing about the similarly widely varying costs per kilowatt-hour. They do not acknowledge that panels in the Pacific Northwest will cost twice that of those in the Desert Southwest. This importance of this disparity is compounded by the underestimate of the social cost of carbon and the possible conflation of sulfur dioxide and particulate matter damages. The currently accepted social cost of GHG emissions developed by the U.S. Environmental Protection Agency (US EPA) is ranges from $50 to $150 per tonne in 2030 (and recent studies have estimated that this is too low), compared to the outdated $41 per tonne in the article. Most of the SO2 damages arise from creating PM so there is likely double counting for these criteria pollutants. (The study also ignore the strong correlation between GHG and SO2 emissions as coal is the biggest source of both.) The study also fails to account for the enormous transmission costs that would be incurred moving solar output from the Desert Southwest to the Northeast to mitigate the purported damages.

Second, the authors try to claim that rooftop solar has not relieved transmission congestion by looking at grid congestion prices. The problem is that this method is like looking at an empty barn and saying a horse never lived there. Congestion pricing is based on the current transmission capacity situation. It says nothing about the history of transmission congestion or the ability and efforts to look forward to mitigate congestion. The study found that congestion prices were often negative or small in areas with substantial rooftop solar capacity. That doesn’t show that the solar capacity has little value–instead it shows that it actually relieved the congestion effectively–a completely opposite conclusion.

In contrast, the California Independent System Operator (CAISO) calculated in 2017 (contemporaneously with the article’s baseline) that at least $2.6 billion in transmission projects had been deferred. And given the utilities’ poor records on load forecasting, these savings have likely grown substantially. CAISO had anticipated and already relieved the congestion that the authors’ purported metric was searching for.

This disparity in economic results highlights the nature of investing in long-lived infrastructure that requires multiple years to build–one cannot wait for a shortfall to emerge to respond because that’s too late. Instead, one must anticipate those events and act even when its uncertain. This study is yet another example of how relying on the premise that short-run electricity market prices are reflective of long-run marginal costs is mistaken and should be set aside for policy analysis.

“Making the perfect the enemy of the better” for a carbon tax

In an opinion article published on Utility Dive, Kenneth Costello argues that adopting a carbon tax would be a mistake. As he says, “(i)nstead of a carbon tax, why not give more consideration to adaptive strategies, which can evolve over time in response to new information?” His arguments make several key errors and underestimate the political will required to deliver his preferred option.

We need not rely on the social cost of carbon (SCC) to set a tax. Instead of using a benefit-cost approach implied by the SCC, we can use a cost-effectiveness approach by setting the tax to achieve an expected amount of greenhouse gases reduction. This is really no different than how we conduct most of our private transactions–we don’t directly weigh the monetary benefits of buying a new car against its costs–we decide what type of car that we want and then spend the money to buy that car. We may not achieve the mythical “positive net benefits” using such a strategy, but the the truth is that benefit-cost analysis is problematic in the context of climate change, as Martin Weitzmann among others pointed out.

We have a good idea of how increased prices that would result from a carbon tax impact demand, contrary to Costello’s assertion. We have seen that over and over with changes in gasoline and electricity prices in the last half century. (One paper found that the early CAFE standards did not affect automobile fleet fuel economy until gas prices fell in 1984.) We can adaptively manage a carbon tax (which also can be implemented as a global trade tariff framework) to steer toward our emissions reduction target.

Costello instead proposes that we focus solely on climate adaptation by hardening our infrastructure and other measures. This illustrates a lack of understanding of the breadth of the expected impacts and the inability of a large segment of the world’s population to undertake such mitigation without a large wealth transfer. Further, such adaptation focuses largely on the direct impacts to humans and ignores the farther ranging ones on our global environment. Those latter effects, such as ocean acidification and melting of the tundra, can lead to catastrophic outcomes that cannot be readily adapted to, no matter what is spent. And there other effects that that we may not even know about. Focusing so narrowly on what might be adaptive strategies will lead to a gross underestimation of the costs to adapt.

Finally, Costello overestimates the political barriers to implementing and managing a carbon tax and overestimates the political will to implement adaptation strategies. Contrary to his assertion, environmental groups such as EDF and NRDC have been at the forefront of using prices and taxes to regulate environmental pollutants. (I have worked for several of them on such proposals.) Yes, politicians want to avoid taxes, but that reflects the more general problem of wanting to avoid any hard choices. And we only need to look at the state of the U.S. infrastructure to see how difficult it is to persuade the political system to make the investments that Costello recommends. This will be a tough road either way, but the carbon tax option cannot be simply dismissed based on Costello’s analysis.

 

Our responsibility to our children

UN-CLIMATE-ENVIRONMENT-GRETA THUNBERG

Greta Thunberg’s speech at the UN has sparked a discussion about our deeper responsibilities to our future generations. When we made the huge effort to fight World War II, did we ask “how much will this cost?” We face the same existential threat and should make the same commitment. We can do this cost effectively, and avoid making most stupid decisions, but asking whether this effort is worth it is now beyond question. We will have to consider how to compensate those who have invested their money or their livelihoods in activities that we now recognize as damaging to the climate, and that will be an added cost to the rest of us. (And we may see this as unfair.) But we really have no choice.

J. Frank Bullit posted on “Fox and Hounds” a sentiment that reflects the core of opposition to such actions:

What if the alarmists are wrong, yet there is no counter to the demands of enacting economic and energy policies we might regret?”

So our energy costs might be a bit more than it would have otherwise, but we get a cleaner environment in exchange. And even now, renewable energy sources are competing well on a dollar to dollar basis.

On the other hand, if the “alarmists” are correct, the consequences have a significant probability of being catastrophic to our civilization, as well as our environment. We all have insurance on our houses for events that we see as highly unlikely. We pay that extra cost on our house to gain assurance that we will recover our investments if such unlikely events occur. These are costs that we are willing to accept because we know that the “alarmists” have a point about the risks of house fires. We should be taking the same attitude towards climate change assessments. It’s not possible to prove that there is no risk, or even that the risk is tiny. And the data trends are sufficiently consistent with the forecasts to date that the probabilities weigh more towards a likelihood than not.

Unless opponents can show that the consequences of the alarmists being wrong are worse than the climate change threat, we have to act to mitigate that risk in much the same way as we do when we buy house insurance. (And by the way, we don’t have another “house” to move to…)

Reaganomics for fuel economy?

electric-car

I chuckled when I saw this article extolling how CAFE fuel economy standards should be replaced with “clean tax cuts.” One proponent said, “If you want more of something, tax it less.”

But apparently, these incentives work only one direction. “It’s very common, historically, for companies to not meet the targets and just pay the fines,” said Josiah Neeley, a senior fellow for the R Street Institute. However, the auto companies were not happy with a proposal to increase the penalty 155%.  Does that mean that the penalty got large enough to incent greater compliance?

What type of regulation when?

screen2bshot2b2018-02-112bat2b22-19-50

I like this taxonomy of what type of regulatory/liability framework to use in which situation posted in Environmental Economics. (Reminds me of a market-type structure I created for my 1996 paper on environmental commodity markets.) However, I think the two choices on the right side could be changed:

  • Lower right corner to “incentive-based regulation”: The damages are clear and can be valued, but engaging in market transactions is costly. For example, energy efficiency has a clear value with significant spill over benefits, but the costs of gaining information about net gains is costly for individuals. So setting an incentive standard for manufacturers or in energy rates is more cost effective.
  • Upper right corner to “command and control regulation”: The damages are known and significant, but quantifying them economically, or even physically, is difficult. There are no opportunities for market transactions, but society wants to act. In this case, the regulators would set bounds on behavior or performance.

Paying off coal miners to improve the environment

4f06c43b7ad545688ca6766cdfeec1c8

Finally, a real world example of how benefit-cost analysis should be used in practice. Alberta takes the revenues that represent a portion of the society wide benefits and distributes those to the losers from the policy change. Economists have almost always ignored the problem of how to compensate losers in changes in social policy, and of course those who keep losing increasingly oppose any more policies. Instead of dreaming up ways to invest carbon market revenues in whiz bang solutions, we first need to focus on who’s being left behind so they are not resentful, and become a key political impediment to doing the right thing.

Trivializing the risks of climate change

Blank spread

The Guardian

I follow Matthew Kahn’s, USC economics chair, blog posts. He expresses a libertarian view. He also writes about climate adaptation. He makes an important point that civilization is not static and we will be able to adapt the human ecology to a range of climate change. But his latest post on how climate change might affect marathon performances raised an important issue for me.

Kahn fails to acknowledge that adaptation to small, incremental climate change is not the concern. It’s the large, catastrophic changes with unknown (and unknowable) probability–deep uncertainty–that is of concern–collapsing ice sheets or ecosystems. He is not addressing the problem of what happens if the climate passes a tipping point. These types of articles and blog posts produced by Kahn and his colleagues trivialize the real risks and consequences, as though we’re just trying to adapt to a change in the weather while ignoring the potential systemic changes.