Tag Archives: solar power

Upfront solar subsidy more cost effective than per kilowatt-hour

Solar_panels_on_house_roof_winter_view

This paper from the American Economic Review found that consumers use a discount rate in excess of 15% in valuing residential solar power credits, compared to a social-wide discount rate of 3%.  The implication is that a government can incent the same amount of solar investment through an upfront credit for as little as half the cost of a per kilowatt-hour ongoing subsidy.

The California Solar Initiative had two different incentive methods, the Performance Based Incentive (PBI) which was paid out over 5 years and the Expected Performance-Based Buydowns (EPBB) paid out upfront. The former was preferred by policy makers but the latter was more popular with homeowners. Now we know the degree of difference in the preference.

Advertisements

Ahead of the tariff, U.S. imported 3 years worth of solar panels from China

1024x1024Panel imports were up 1,200 percent in fourth quarter 2017. That implies that installers were banking supplies to ride out the import tariff imposed by the Trump Administration. Unfortunately, it also means that the rapid technical and cost progress for panels may stall for that three year period.

Problems with “Residential storage can undercut benefits of rooftop solar, says new study” | (A response to a Utility Dive article)

A new study in Nature Energy finds storing rooftop solar can increase emissions and energy consumption.

My thoughts: Here’s the key statement for the finding in this report: “based on today’s Texas grid mix, which is primarily made up of fossil fuels.” If the either the marginal generation on the grid is low or no GHG (e.g., renewables overgeneration which is an increasing problem in California) or the connection to the grid is cut or restricted (e.g., in a microgrid), then this premise doesn’t hold.

This study relies on fossil fueled generation being the marginal energy source. It also focuses solely on operational changes with existing resources. The appropriate frame is looking at the change in generation investment with and without storage, so for example more renewables become cost effective with storage so the overall generation mix changes.

The second problem is that most of the production cost models are yet incapable of capturing reduction in flexible capacity use. That’s why the California Energy Commission has had DNV and LBNL working on modeling those resources. So the emission savings are underestimated.

The third problem is that savings in residual unit commitment (RUC) is underestimated in the models. These are gas units running on standby with no-load, to be available the next day for ramping, load following or reliability. Storage reduces the need for these resources as well. NREL recently released a study on the value of storage that captures this benefit.

If these findings are valid, then the existing Helms pumped storage plant is also increasing GHG emissions. One could go so far as to say that the value of pondage hydropower storage may be so diminished that relicensing conditions that require run of river operations may have little effect on costs and GHG emissions.

Source: Residential storage can undercut benefits of rooftop solar, says new study | Utility Dive

And then this…Trump’s energy plan doesn’t mention solar – The Washington Post

After the release of a study showing solar now employs more than oil, gas and coal combined.

Source: Trump’s energy plan doesn’t mention solar, an industry that just added 51,000 jobs – The Washington Post

Repost: NREL-Four reasons 30% wind and solar is technically no big deal | Utility Dive

Many regions are already operating power systems with more renewable energy than previously thought possible, an NREL analyst points out.

Source: Four reasons 30% wind and solar is technically no big deal | Utility Dive