Tag Archives: PG&E

A misguided perspective on California’s rooftop solar policy

Severin Borenstein at the Energy Institute at Haas has taken another shot at solar rooftop net energy metering (NEM). He has been a continual critic of California’s energy decentralization policies such as those on distribution energy resources (DER) and community choice aggregators (CCAs). And his viewpoints have been influential at the California Public Utilities Commission.

I read these two statements in his blog post and come to a very different conclusions:

“(I)ndividuals and businesses make investments in response to those policies, and many come to believe that they have a right to see those policies continue indefinitely.”

Yes, the investor owned utilities and certain large scale renewable firms have come to believe that they have a right to see their subsidies continue indefinitely. California utilities are receiving subsidies amounting to $5 billion a year due to poor generation portfolio management. You can see this in your bill with the PCIA. This dwarfs the purported subsidy from rooftop solar. Why no call for reforming how we recover these costs from ratepayers and force shareholder to carry their burden? (And I’m not even bringing up the other big source of rate increases in excessive transmission and distribution investment.)

Why wasn’t there a similar cry against bailing out PG&E in not one but TWO bankruptcies? Both PG&E and SCE have clearly relied on the belief that they deserve subsidies to continue staying in business. (SCE has ridden along behind PG&E in both cases to gain the spoils.) The focus needs to be on ALL players here if these types of subsidies are to be called out.

“(T)he reactions have largely been about how much subsidy rooftop solar companies in California need in order to stay in business.”

We are monitoring two very different sets of media then. I see much more about the ability of consumers to maintain an ability to gain a modicum of energy independence from large monopolies that compel that those consumers buy their service with no viable escape. I also see a reactions about how this will undermine directly our ability to reduce GHG emissions. This directly conflicts with the CEC’s Title 24 building standards that use rooftop solar to achieve net zero energy and electrification in new homes.

Along with the effort to kill CCAs, the apparent proposed solution is to concentrate all power procurement into the hands of three large utilities who haven’t demonstrated a particularly adroit ability at managing their portfolios. Why should we put all of our eggs into one (or three) baskets?

Borenstein continues to rely on an incorrect construct for cost savings created by rooftop solar that relies on short-run hourly wholesale market prices instead of the long-term costs of constructing new power plants, transmission rates derived from average embedded costs instead of full incremental costs and an assumption that distribution investment is not avoided by DER contrary to the methods used in the utilities’ own rate filings. He also appears to ignore the benefits of co-locating generation and storage locally–a set up that becomes much less financially viable if a customer adds storage but is still connected to the grid.

Yes, there are problems with the current compensation model for NEM customers, but we also need to recognize our commitments to customers who made investments believing they were doing the right thing. We need to acknowledge the savings that they created for all of us and the push they gave to lower technology costs. We need to recognize the full set of values that these customers provide and how the current electric market structure is too broken to properly compensate what we want customers to do next–to add more storage. Yet, the real first step is to start at the source of the problem–out of control utility costs that ratepayers are forced to bear entirely.

The CPUC takes a small step towards better rationality in rate setting

Last month the California Public Utilities Commission (CPUC) issued a decision in Phase II of the PG&E 2020 General Rate Case that endorsed all but one of my proposals on behalf of the Agricultural Energy Consumers Association (AECA) to better align revenue allocation with a rational approach to using marginal costs. Most importantly the CPUC agreed with my observation that the energy system is changing too rapidly to adopt a permanent set of rate setting principles as PG&E had advocated for. For now, we will continue to explore options as relationships among customers, utilities and other providers evolve.

At the heart of the matter is the economic principle that prices are set most efficiently when they adhere to the marginal cost or the cost of producing the last unit of a good or service. In a “standard” market, marginal costs are usually higher than the average cost so a producing firm generates a profit with each sale. For utilities, this is often not true–the average costs are higher than the marginal costs, so we need a means of allocating those additional costs to ensure that the utilities continue to be viable entities. California uses a “second-best” economic method called “Ramsey pricing” that applies relative marginal costs to serve different customers to allocate revenue responsibility.

I made four key proposals on how to apply marginal cost principles for rate setting purposes:

  1. Proposes an updated agricultural load forecasting method that is more accurate and incorporates only public data and currently known variables that can predict next year’s load more accurately.
  2. Use PCIA exit fee market price benchmarks (MPBs) to give consistent revenue allocation across rate classes and bundled vs departed customers.
    1. Include renewable energy credits (REC) in the marginal energy costs (MEC) to reflect incremental RPS acquisition and consistency with the PCIA MPB.
    2. Use the resource adequacy (RA) MPB for setting the marginal generation capacity cost (MGCC) due to uncertainty about resource type for capacity and for consistency with the PCIA MPB.
  3. Marginal customer access costs (MCAC) should be calculated by using the depreciated replacement cost for existing services (RCNLD), and new services costs added for the new customers added as growth.

PG&E settled with AECA on the first to change its agricultural load forecasting methodology in upcoming proceedings. The CPUC agreed with AECA’s positions on two of the other three (RECs in the MEC, and MCAC). And on the third related to MGCC, the adopted position differed little materially.

The most surprising was the choice to use the RCNLD costs for existing customer connections. The debate over how to calculate the MCAC has raged for three decades. Industrial customers preferred valuing all connections, new and existing, at the cost of new connection using the “real economic carrying cost” (RECC) method. This is most consistent with a simple reading of marginal cost pricing principles. On the other side, residential customer advocates claimed that existing connections were sunk costs and have a value of zero for determining marginal, inventing the “new customer only” (NCO) method. I explained in my testimony that the RECC method fails to account for the reduced value of aging connections, but that those connections have value in the market place through house prices, just as a swimming pool or a bathroom remodel adds value. The diminished value of those connections can be approximated using the depreciation schedules that PG&E applies to determine its capital-related revenue requirements. The CPUC has used the RCNLD method to set the value for the sale of PG&E assets to municipal utilities.

The CPUC agreed with this approach which essentially is a compromise between the RECC and NCO method. The RCNLD acknowledges the fundamental points of both methods–that existing customer connections represent an opportunity value for customers but those connections do not have the same value as new ones.

Why are we punishing customers for doing the right thing?

The saying goes “No good deed goes unpunished.” The California Public Utilities Commission seems to have taken that motto to heart recently, and stands ready to penalize yet another group of customers who answered the clarion call to help solve the state’s problems by radically altering the rules for solar rooftops. Here’s three case studies of recent CPUC actions that undermine incentives for customers to act in the future in response to state initiatives: (1) farmers who invested in response to price incentives, (2) communities that pursued renewables more assertively, and (3) customers who installed solar panels.

Agriculture: Farmers have responded to past time of use (TOU) rate incentives more consistently and enthusiastically than any other customer class. Instead of being rewarded for their consistency, their peak price periods shifted from the afternoon to the early evening. Growers face much more difficulty in avoiding pumping during that latter period.

Since TOU rates were introduced to agricultural customers in the late 1970s, growers have made significant operational changes in response to TOU differentials between peak and off-peak energy prices to minimize their on-peak consumption. These include significant investments in irrigation equipment, storage and conveyance infrastructure and labor deployment rescheduling. The results of these expenditures are illustrated in the figure below, which shows how agricultural loads compare with system-wide load on a peak summer weekday in 2015, contrasting hourly loads to the load at the coincident peak hour. Both the smaller and larger agricultural accounts perform better than a range of representative rate schedules. Most notably agriculture’s aggregate load shape on a summer weekday is inverted relative to system peak, i.e., the highest agricultural loads occur during the lowest system load periods, in contrast with other rate classes.

All other rate schedules shown in the graphic hit their annual peak on the same peak day within the then-applicable peak hours of noon to 6 p.m. In contrast, agriculture electricity demand is less than 80% of its annual peak during those high-load hours, with its daily peak falling outside the peak period. Agriculture’s avoidance of peak hours occurred during the summer agricultural growing season, which coincided with peak system demand—just as the Commission asked customers to do. The Commission could not ask for a better aggregate response to system needs; in contrast to the profiles for all of the other customer groups, agriculture has significantly contributed to shifting the peak to a lower cost evening period.

The significant changes in the peak period price timing and differential that the CPUC adopted increases uncertainty over whether large investments in high water-use efficiency microdrip systems – which typically cost $2,000 per acre–will be financially viable. Microdrip systems have been adopted widely by growers over the last several years—one recent study of tomato irrigation rates in Fresno County could not find any significant quantity of other types of irrigation systems. Such systems can be subject to blockages and leaks that are only detectable at start up in daylight. Growers were able to start overnight irrigation at 6 p.m. under the legacy TOU periods and avoid peak energy use. In addition, workers are able to end their day shortly after 6 p.m. and avoid nighttime accidents. Shifting that load out of the peak period will be much more difficult to do with the peak period ending after sunset.

Contrary to strong Commission direction to incent customers to avoid peak power usage, the shift in TOU periods has served to penalize, and reverse, the great strides the agricultural class has made benefiting the utility system over the last four decades.

Community choice aggregators: CCAs were created, among other reasons, to develop more renewable or “green” power. The state achieved its 2020 target of 33% in large part because of the efforts of CCAs fostered through offerings of 50% and 100% green power to retail customers. CCAs also have offered a range of innovative programs that go beyond the offerings of PG&E, SCE and SDG&E.

Nevertheless, the difficulty of reaching clean energy goals is created by the current structure of the PCIA. The PCIA varies inversely with the market prices in the market–as market prices rise, the PCIA charged to CCAs and direct access (DA) customers decreases. For these customers, their overall retail rate is largely hedged against variation and risk through this inverse relationship.

The portfolios of the incumbent utilities are dominated by long-term contracts with renewables and capital-intensive utility-owned generation. For example, PG&E is paying a risk premium of nearly 2 cents per kilowatt-hour for its investment in these resources. These portfolios are largely impervious to market price swings now, but at a significant cost. The PCIA passes along this hedge through the PCIA to CCAs and DA customers which discourages those latter customers from making their own long term investments. (I wrote earlier about how this mechanism discouraged investment in new capacity for reliability purposes to provide resource adequacy.)

The legacy utilities are not in a position to acquire new renewables–they are forecasting falling loads and decreasing customers as CCAs grow. So the state cannot look to those utilities to meet California’s ambitious goals–it must incentivize CCAs with that task. The CCAs are already game, with many of them offering much more aggressive “green power” options to their customers than PG&E, SCE or SDG&E.

But CCAs place themselves at greater financial risk under the current rules if they sign more long-term contracts. If market prices fall, they must bear the risk of overpaying for both the legacy utility’s portfolio and their own.

Solar net energy metered customers: Distributed solar generation installed under California’s net energy metering (NEM/NEMA) programs has mitigated and even eliminated load and demand growth in areas with established customers. This benefit supports protecting the investments that have been made by existing NEM/NEMA customers. Similarly, NEM/NEMA customers can displace investment in distribution assets. That distribution planners are not considering this impact appropriately is not an excuse for failing to value this benefit. For example, PG&E’s sales fell by 5% from 2010 to 2018 and other utilities had similar declines. Peak loads in the CAISO balancing authority reach their highest point in 2006 and the peak in August 2020 was 6% below that level.

Much of that decrease appears to have been driven by the installation of rooftop solar. The figure above illustrates the trends in CAISO peak loads in the set of top lines and the relationship to added NEM/NEMA installations in the lower corner. It also shows the CEC’s forecast from its 2005 Integrated Energy Policy Report as the top line. Prior to 2006, the CAISO peak was growing at annual rate of 0.97%; after 2006, peak loads have declined at a 0.28% trend. Over the same period, solar NEM capacity grew by over 9,200 megawatts. The correlation factor or “R-squared” between the decline in peak load after 2006 and the incremental NEM additions is 0.93, with 1.0 being perfect correlation. Based on these calculations, NEM capacity has deferred 6,500 megawatts of capacity additions over this period. Comparing the “extreme” 2020 peak to the average conditions load forecast from 2005, the load reduction is over 11,500 megawatts. The obvious conclusion is that these investments by NEM customers have saved all ratepayers both reliability and energy costs while delivering zero-carbon energy.

The CPUC now has before it a rulemaking in which the utilities and some ratepayer advocates are proposing to not only radically reduce the compensation to new NEM/NEMA customers but also to change the terms of the agreements for existing ones.

One of the key principles of providing financial stability is setting prices and rates for long-lived assets such as solar panels and generation plants at the economic value when the investment decision was made to reflect the full value of the assets that would have been acquired otherwise.  If that new resource had not been built, either a ratebased generation asset would have been constructed by the utility at a cost that would have been recovered over a standard 30-year period or more likely, additional PPAs would have been signed. Additionally, the utilities’ investments and procurement costs are not subject to retroactive ratemaking under the rule prohibiting such ratemaking and Public Utilities Code Section 728, thus protecting shareholders from any risk of future changes in state or Commission policies.

Utility customers who similarly invest in generation should be afforded at least the same assurances as the utilities with respect to protection from future Commission decisions that may diminish the value of those investments. Moreover, customers do not have the additional assurances of achieving a certain net income so they already face higher risks than utility shareholders for their investments.

Generators are almost universally afforded the ability to recover capital investments based on prices set for multiple years, and often the economic life of their assets. Utilities are able to put investments in ratebase to be recovered at a fixed rate of return plus depreciation over several decades. Third-party generators are able to sign fixed price contracts for 10, 20, and even 40 years. Some merchant generators may choose to sell only into the short-term “hourly” market, but those plants are not committed to selling whenever the CAISO demands so. Generators are only required to do so when they sign a PPA with an assured payment toward investment recovery.

Ratepayers who make investments that benefit all ratepayers over the long term should be offered tariffs that provide a reasonable assurance of recovery of those investments, similar to the PPAs offered to generators. Ratepayers should be able to gain the same assurances as generators who sign long-term PPAs, or even utilities that ratebase their generation assets, that they will not be forced to bear all of the risk of investing of clean self-generation. These ratepayers should have some assurance over the 20-plus year expected life of their generation investment.

What to do about Diablo Canyon?

The debate over whether to close Diablo Canyon has resurfaced. The California Public Utilities Commission, which support from the Legislature, decided in 2018 to close Diablo by 2025 rather than proceed to relicensing. PG&E applied in 2016 to retire the plant rather than relicense due to the high costs that would make the energy uneconomic. (I advised the Joint CCAs in this proceeding.)

Now a new study from MIT and Stanford finds potential savings and emission reductions from continuing operation. (MIT in particular has been an advocate for greater use of nuclear power.) Others have written opinion articles on either side of the issue. I wrote the article below in the Davis Enterprise addressing this issue. (It was limited to 900 words so I couldn’t cover everything.)

IT’S OK TO CLOSE DIABLO CANYON NUCLEAR PLANT
A previous column (by John Mott-Smith) asked whether shutting down the Diablo Canyon nuclear plant is risky business if we don’t know what will replace the electricity it produces. John’s friend Richard McCann offered to answer his question. This is a guest column, written by Richard, a universally respected expert on energy, water and environmental economics.

John Mott-Smith asked several questions about the future of nuclear power and the upcoming closure of PG&E’s Diablo Canyon Power Plant in 2025. His main question is how are we going to produce enough reliable power for our economy’s shift to electricity for cars and heating. The answers are apparent, but they have been hidden for a variety of reasons.
I’ve worked on electricity and transportation issues for more than three decades. I began my career evaluating whether to close Sacramento Municipal Utility District’s Rancho Seco Nuclear Generating Station and recently assessed the cost to relicense and continue operations of Diablo after 2025.
Looking first at Diablo Canyon, the question turns almost entirely on economics and cost. When the San Onofre Nuclear Generating Station closed suddenly in 2012, greenhouse gas emissions rose statewide the next year, but then continued a steady downward trend. We will again have time to replace Diablo with renewables.
Some groups focus on the risk of radiation contamination, but that was not a consideration for Diablo’s closure. Instead, it was the cost of compliance with water quality regulations. The power plant currently uses ocean water for cooling. State regulations required changing to a less impactful method that would have cost several billion dollars to install and would have increased operating costs. PG&E’s application to retire the plant showed the costs going forward would be at least 10 to 12 cents per kilowatt-hour.
In contrast, solar and wind power can be purchased for 2 to 10 cents per kilowatt-hour depending on configuration and power transmission. Even if new power transmission costs 4 cents per kilowatt-hour and energy storage adds another 3 cents, solar and wind units cost about 3 cents, which totals at the low end of the cost for Diablo Canyon.
What’s even more exciting is the potential for “distributed” energy resources, where generation and power management occurs locally, even right on the customers’ premises rather than centrally at a power plant. Rooftop solar panels are just one example—we may be able to store renewable power practically for free in our cars and trucks.
Automobiles are parked 95% of the time, which means that an electric vehicle (EV) could store solar power at home or work during the day and for use at night. When we get to a vehicle fleet that is 100% EVs, we will have more than 30 times the power capacity that we need today. This means that any individual car likely will only have to use 10% of its battery capacity to power a house, leaving plenty for driving the next day.
With these opportunities, rooftop and community power projects cost 6 to 10 cents per kilowatt-hour compared with Diablo’s future costs of 10 to 12 cents.
Distributed resources add an important local protection as well. These resources can improve reliability and resilience in the face of increasing hazards created by climate change. Disruptions in the distribution wires are the cause of more than 95% of customer outages. With local generation, storage, and demand management, many of those outages can be avoided, and electricity generated in our own neighborhoods can power our houses during extreme events. The ad that ran during the Olympics for Ford’s F-150 Lightning pick-up illustrates this potential.
Opposition to this new paradigm comes mainly from those with strong economic interests in maintaining the status quo reliance on large centrally located generation. Those interests are the existing utilities, owners, and builders of those large plants plus the utility labor unions. Unfortunately, their policy choices to-date have led to extremely high rates and necessitate even higher rates in the future. PG&E is proposing to increase its rates by another third by 2024 and plans more down the line. PG&E’s past mistakes, including Diablo Canyon, are shown in the “PCIA” exit fee that [CCA] customers pay—it is currently 20% of the rate. Yolo County created VCEA to think and manage differently than PG&E.
There may be room for nuclear generation in the future, but the industry has a poor record. While the cost per kilowatt-hour has gone down for almost all technologies, even fossil-fueled combustion turbines, that is not true for nuclear energy. Several large engineering firms have gone bankrupt due to cost overruns. The global average cost has risen to over 10 cents per kilowatt-hour. Small modular reactors (SMR) may solve this problem, but we have been promised these are just around the corner for two decades now. No SMR is in operation yet.
Another problem is management of radioactive waste disposal and storage over the course of decades, or even millennia. Further, reactors fail on a periodic basis and the cleanup costs are enormous. The Fukuyama accident cost Japan $300 to $750 billion. No other energy technology presents such a degree of catastrophic failure. This liability needs to be addressed head on and not ignored or dismissed if the technology is to be pursued.

A new agricultural electricity use forecast method holds promise for water use management

Agricultural electricity demand is highly sensitive to water availability. Under “normal” conditions, the State Water Project (SWP) and Central Valley Project (CVP), as well as other surface water supplies, are key sources of irrigation water for many California farmers. Under dry conditions, these water sources can be sharply curtailed, even eliminated, at the same time irrigation requirements are heightened. Farmers then must rely more heavily on groundwater, which requires greater energy to pump than surface water, since groundwater must be lifted from deeper depths.

Over extended droughts, like between 2012 to 2016, groundwater levels decline, and must be pumped from ever deeper depths, requiring even more energy to meet crops’ water needs. As a result, even as land is fallowed in response to water scarcity, significantly more energy is required to water remaining crops and livestock. Much less pumping is necessary in years with ample surface water supply, as rivers rise, soils become saturated, and aquifers recharge, raising groundwater levels.

The surface-groundwater dynamic results in significant variations in year-to-year agricultural electricity sales. Yet, PG&E has assigned the agricultural customer class a revenue responsibility based on the assumption that “normal” water conditions will prevail every year, without accounting for how inevitable variations from these circumstances will affect rates and revenues for agricultural and other customers.

This assumption results in an imbalance in revenue collection from the agricultural class that does not correct itself even over long time periods, harming agricultural customers most in drought years, when they can least afford it. Analysis presented presented by M.Cubed on behalf of the Agricultural Energy Consumers Association (AECA) in the 2017 PG&E General Rate Case (GRC) demonstrated that overcollections can be expected to exceed $170 million over two years of typical drought conditions, with the expected overcollection $34 million in a two year period. This collection imbalance also increases rate instability for other customer classes.

Figure-1 compares the difference between forecasted loads for agriculture and system-wide used to set rates in the annual ERRA Forecast proceedings (and in GRC Phase 2 every three years) and the actual recorded sales for 1995 to 2019. Notably, the single largest forecasting error for system-wide load was a sales overestimate of 4.5% in 2000 and a shortfall in 2019 of 3.7%, while agricultural mis-forecasts range from an under-forecast of 39.2% in the midst of an extended drought in 2013 to an over-forecast of 18.2% in one of the wettest years on record in 1998. Load volatility in the agricultural sector is extreme in comparison to other customer classes.

Figure-2 shows the cumulative error caused by inadequate treatment of agricultural load volatility over the last 25 years. An unbiased forecasting approach would reflect a cumulative error of zero over time. The error in PG&E’s system-wide forecast has largely balanced out, even though the utility’s load pattern has shifted from significant growth over the first 10 years to stagnation and even decline. PG&E apparently has been able to adapt its forecasting methods for other classes relatively well over time.

The accumulated error for agricultural sales forecasting tells a different story. Over a quarter century the cumulative error reached 182%, nearly twice the annual sales for the Agricultural class. This cumulative error has consequences for the relative share of revenue collected from agricultural customers compared to other customers, with growers significantly overpaying during the period.

Agricultural load forecasting can be revised to better address how variations in water supply availability drive agricultural load. Most importantly, the final forecast should be constructed from a weighted average of forecasted loads under normal, wet and dry conditions. The forecast of agricultural accounts also must be revamped to include these elements. In addition, the load forecast should include the influence of rates and a publicly available data source on agricultural income such as that provided by the USDA’s Economic Research Service.

The Forecast Model Can Use An Additional Drought Indicator and Forecasted Agricultural Rates to Improve Its Forecast Accuracy

The more direct relationship to determine agricultural class energy needs is between the allocation of surface water via state and federal water projects and the need to pump groundwater when adequate surface water is not available from the SWP and federal CVP. The SWP and CVP are critical to California agriculture because little precipitation falls during the state’s Mediterranean-climate summer and snow-melt runoff must be stored and delivered via aqueducts and canals. Surface water availability, therefore, is the primary determinant of agricultural energy use, while precipitation and related factors, such as drought, are secondary causes in that they are only partially responsible for surface water availability. Other factors such as state and federal fishery protections substantially restrict water availability and project pumping operations greatly limiting surface water deliveries to San Joaquin Valley farms.

We found that the Palmer Drought Stress Index (PDSI) is highly correlated with contract allocations for deliveries through the SWP and CVP, reaching 0.78 for both of them, as shown in Figure AECA-3. (Note that the correlation between the current and lagged PDSI is only 0.34, which indicates that both variables can be included in the regression model.) Of even greater interest and relevance to PG&E’s forecasting approach, the correlation with the previous year’s PDSI and project water deliveries is almost as strong, 0.56 for the SWP and 0.53 for the CVP. This relationship can be seen also in Figure-3, as the PDSI line appears to lead changes in the project water deliveries. This strong relationship with this lagged indicator is not surprising, as both the California Department of Water Resources and U.S. Bureau of Reclamation account for remaining storage and streamflow that is a function of soil moisture and aquifers in the Sierras.

Further, comparing the inverse of water delivery allocations, (i.e., the undelivered contract shares), to the annual agricultural sales, we can see how agricultural load has risen since 1995 as the contract allocations delivered have fallen (i.e., the undelivered amount has risen) as shown in Figure-4. The decline in the contract allocations is only partially related to the amount of precipitation and runoff available. In 2017, which was among the wettest years on record, SWP Contractors only received 85% of their allocations, while the SWP provided 100% every year from 1996 to 1999. The CVP has reached a 100% allocation only once since 2006, while it regularly delivered above 90% prior to 2000. Changes in contract allocations dictated by regulatory actions are clearly a strong driver in the growth of agricultural pumping loads but an ongoing drought appears to be key here. The combination of the forecasted PDSI and the lagged PDSI of the just concluded water year can be used to capture this relationship.

Finally, a “normal” water year rarely occurs, occurring in only 20% of the last 40 years. Over time, the best representation of both surface water availability and the electrical load dependent on it is a weighted average across the probabilities of different water year conditions.

Proposed Revised Agricultural Forecast

We prepared a new agricultural load forecast for 2021 implementing the changes recommended herein. In addition, the forecasted average agricultural rate was added, which was revealed to be statistically valid. The account forecast was developed using most of the same variables as for the sales forecast to reflect similarities in drivers of both sales and accounts.

Figure-5 compares the performance of AECA’s proposed model to PG&E’s model filed in its 2021 General Rate Case. The backcasted values from the AECA model have a correlation coefficient of 0.973 with recorded values,[1] while PG&E’s sales forecast methodology only has a correlation of 0.742.[2] Unlike PG&E’s model almost all of the parameter estimates are statistically valid at the 99% confidence interval, with only summer and fall rainfall being insignificant.[3]

AECA’s accounts forecast model reflects similar performance, with a correlation of 0.976. The backcast and recorded data are compared in Figure-6. For water managers, this chart shows how new groundwater wells are driven by a combination of factors such as water conditions and electricity prices.




How to increase renewables? Change the PCIA

California is pushing for an increase in renewable generation to power its electrification of buildings and the transportation sector. Yet the state maintains a policy that will impede reaching that goal–the power cost indifference adjustment (PCIA) rate discourages the rapidly growing community choice aggregators (CCAs) from investing directly in new renewable generation.

As I wrote recently, California’s PCIA rate charged as an exit fee on departed customers is distorting the electricity markets in a way that increases the risk of another energy crisis similar to the debacle in 2000 to 2001. An analysis of the California Independent System Operator markets shows that market manipulations similar to those that created that crisis likely led to the rolling blackouts last August. Unfortunately, the state’s energy agencies have chosen to look elsewhere for causes.

The even bigger problem of reaching clean energy goals is created by the current structure of the PCIA. The PCIA varies inversely with the market prices in the market–as market prices rise, the PCIA charged to CCAs and direct access (DA) customers decreases. For these customers, their overall retail rate is largely hedged against variation and risk through this inverse relationship.

The portfolios of the incumbent utilities, i.e., Pacific Gas and Electric, Southern California Edison and San Diego Gas and Electric, are dominated by long-term contracts with renewables and capital-intensive utility-owned generation. For example, PG&E is paying a risk premium of nearly 2 cents per kilowatt-hour for its investment in these resources. These portfolios are largely impervious to market price swings now, but at a significant cost. The PCIA passes along this hedge through the PCIA to CCAs and DA customers which discourages those latter customers from making their own long term investments. (I wrote earlier about how this mechanism discouraged investment in new capacity for reliability purposes to provide resource adequacy.)

The legacy utilities are not in a position to acquire new renewables–they are forecasting falling loads and decreasing customers as CCAs grow. So the state cannot look to those utilities to meet California’s ambitious goals–it must incentivize CCAs with that task. The CCAs are already game, with many of them offering much more aggressive “green power” options to their customers than PG&E, SCE or SDG&E.

But CCAs place themselves at greater financial risk under the current rules if they sign more long-term contracts. If market prices fall, they must bear the risk of overpaying for both the legacy utility’s portfolio and their own.

The best solution is to offer CCAs the opportunity to make a fixed or lump sum exit fee payment based on the market value of the legacy utility’s portfolio at the moment of departure. This would untie the PCIA from variations in the future market prices and CCAs would then be constructing a portfolio that hedges their own risks rather than relying on the implicit hedge embedded in the legacy utility’s portfolio. The legacy utilities also would have to manage their bundled customers’ portfolio without relying on the cross subsidy from departed customers to mitigate that risk.

Vegetation maintenance the new “CFL” for wildfire management

PG&E has been aggressively cutting down trees as part of its attempt to mitigate wildfire risk, but those efforts may be creating their own risks. Previously, PG&E has been accused of just focusing numeric targets over effective vegetation management. This situation is reminiscent of how the utilities pursued energy efficiency prior to 2013 with a seemingly single-minded focus on compact fluorescent lights (CFLs). And that focus did not end well, including leading to both environmental degradation and unearned incentives for utilities.

CFLs represented about 20% of the residential energy efficiency program spending in 2009. CFLs were easy for the utilities–they just delivered steeply discounted, or even free, CFLs to stores and they got to count each bulb as an “energy savings.” By 2013, the CPUC ordered the utilities to ramp down spending on CFLs as a new cost-effective technology emerged (LEDs) and the problem of disposing of mercury in the ballasts of CFLs became apparent. But more importantly, it turned out that CFLs were just sitting in closets, creating much fewer savings than estimated. (It didn’t help that CFLs turned out to have a much shorter life than initially estimated as well.) Even so, the utilities were able claim incentives from the California Public Utilities Commission. Ultimately, it became apparent that CFLs were largely a mistake in the state’s energy efficiency portfolio.

Vegetation management seems to be the same “easy number counting” solution that the utilities, particularly PG&E, have adopted. The adverse consequences will be significant and it won’t solve the problem in the long. Its one advantage is that it allows the utilities to maintain their status quo position at the center of the utility network.

Other alternatives include system hardening such as undergrounding or building microgrids in rural communities to allow utilities to deenergize the grid while maintaining local power. The latter option appears to be the most cost effective solution, but it is also the most threatening to the current position of the incumbent utility by giving customers more independence.

PG&E’s bankruptcy—what’s happened and what’s next?

The wildfires that erupted in Sonoma County the night of October 8, 2017 signaled a manifest change not just limited to how we must manage risks, but even to the finances of our basic utility services. Forest fires had been distant events that, while expanding in size over the last several decades, had not impacted where people lived and worked. Southern California had experienced several large-scale fires, and the Oakland fire in 1991 had raced through a large city, but no one was truly ready for what happened that night, including Pacific Gas and Electric. Which is why the company eventually declared bankruptcy.

PG&E had already been punished for its poor management of its natural gas pipeline system after an explosion killed nine in San Bruno in 2010. The company was convicted in federal court, fined $3 million and placed on supervised probation under a judge.

PG&E also has extensive transmission and distribution network with more than 100,000 miles of wires. Over a quarter of that network runs through areas with significant wildfire risk. PG&E already had been charged with starting several forest fires, including the Butte fire in 2015, and its vegetation management program had been called out as inadequate by the California Public Utilities Commission (CPUC) since the 1990s. The  CPUC caught PG&E diverting $495 million from maintenance spending to shareholders from 1992 to 1997; PG&E was fined $29 million. Meanwhile, two other utilities, Southern California Edison (SCE) and San Diego Gas and Electric (SDG&E) had instituted several management strategies to mitigate wildfire risk (not entirely successful), including turning off “line reclosers” during high winds to avoid short circuits on broken lines that can spark fires. PG&E resisted such steps.

On that October night, when 12 fires erupted, PG&E’s equipment contributed to starting 11 of those, and indirectly at least to other. Over 100,000 acres burned, destroying almost 9,000 buildings and killing 44 people. It was the most destructive fire in history, costing over $14 billion.

But PG&E’s problems were not over. The next year in November 2018, an even bigger fire in Butte County, the Camp fire, caused by a failure of a PG&E transmission line. That one burned over 150,000 acres, killing 85, destroying the community of Paradise and costing $16 billion plus. PG&E now faced legal liabilities of over $30 billion, which exceeds PG&E’s invested capital in its system. PG&E was potentially upside down financially.

The State of California had passed Assembly Bill 1054 that provided a fund of $21 billion to cover excess wildfire costs to utilities (including SCE and SDG&E), but it only covered fires after 2018. The Wine Country and Camp fires were not included, so PG&E faced the question of how to pay for these looming costs. Plus PG&E had an additional problem—federal Judge William Alsup supervising its parole stepped in claiming that these fires were a violation of its parole conditions. The CPUC also launched investigations into PG&E’s safety management and potential restructuring of the firm. PG&E faced legal and regulatory consequences on multiple fronts.

PG&E Corp, the holding company, filed for Chapter 11 bankruptcy on January 14, 2019. PG&E had learned from its 2001 bankruptcy proceeding for its utility company subsidiary that moving its legal and regulatory issues into the federal bankruptcy court gave the company much more control over its fate than being in multiple forums. Bankruptcy law afforded the company the ability to force regulators to increase rates to cover the costs authorized through the bankruptcy. And PG&E suffered no real consequences with the 2001 bankruptcy as share prices returned, and even exceeded, pre-filing levels.

As the case progressed, several proposals, some included in legislative bills, were made to take control of PG&E from its shareholders, through a cooperative, a state-owned utility, or splitting it among municipalities. Governor Gavin Newsom even called on Warren Buffet to buy out PG&E. Several localities, including San Francisco, made separate offers to buy their jurisdictions’ grid. The Governor and CPUC made certain demands of PG&E to restructure its management and board of directors, to which PG&E responded in part. PG&E changed its chief executive officer, and its current CEO, Bill Johnson, will resign on June 30. The Governor holds some leverage because he must certify that PG&E has complied by June 30, 2020 with the requirements of Assembly Bill 1054 that authorizes the wildfire cost relief fund for the utilities.

Meanwhile, PG&E implemented a quick fix to its wildfire risk with “public safety power shutoffs” (PSPS), with its first test in October 2019, which did not fare well. PG&E was accused of being excessive in the number of customers (over 800,000) and duration and failing to coordinate adequately with local governments. A subsequent PSPS event went more smoothly, but still had significant problems. PG&E says that such PSPS events will continue for the next decade until it has sufficiently “hardened” its system to mitigate the fire risk. Such mitigation includes putting power lines underground, changing system configuration and installing “microgrids” that can be isolated and self sufficient for short durations. That program likely will cost tens of billions of dollars, potentially increasing rates as much as 50 percent. One question will be who should pay—all ratepayers or those who are being protected in rural areas?

PG&E negotiated several pieces of a settlement, coming to agreements with hedge-fund investors, debt holders, insurance companies that pay for wildfire losses by residents and businesses, and fire victims. The victims are to be paid with a mix of cash and stock, with a face value of $13.5 billion; the victims are voting on whether to accept this agreement as this article is being written. Local governments will receive $1 billion, and insurance companies $11 billion, for a total of $24.5 billion in payouts.  PG&E has lined up $20 billion in outside financing to cover these costs. The total package is expected to raise $58 billion.

The CPUC voted May 28 to approve PG&E’s bankruptcy plan, along with a proposed fine of $2 billion. PG&E would not be able to recover the costs for the 2017 and 2018 fires from ratepayers under the proposed order. The Governor has signaled that he is likely to also approve PG&E’s plan before the June 30 deadline.

PG&E is still asking for significant rate increases to both underwrite the AB 1054 wildfire protection fund and to implement various wildfire mitigation efforts. PG&E has asked for a $900 million interim rate increase for wildfire management efforts and a settlement agreement in its 2020 general rate case calls for another $575 million annual ongoing increase (with larger amounts to be added in the next three years). These amount to a more than 10 percent increase in rates for the coming year, on top of other rate increases for other investments.

And PG&E still faces various legal difficulties. The utility pleaded guilty to 85 chargesof manslaughter in the Camp fire, making the company a two-time felon. The federal judge overseeing the San Bruno case has repeatedly found PG&E’s vegetation management program wanting over the last two years and is considering remedial actions.

Going forward, PG&E’s rates are likely to rise dramatically over the next five years to finance fixes to its system. Until that effort is effective, PSPS events will be widespread, maybe for a decade. On top of that is that electricity demand has dropped precipitously due to the coronavirus pandemic shelter in place orders, which is likely to translate into higher rates as costs are spread over a smaller amount of usage.

A cautionary tale to communities negotiating with energy project developers

The City of Davis signed a lease option agreement on March 24 with a start up solar development company headed by a former CEO of a large renewable firm. How the negotiation process reflected a lack of sufficient knowledge on the part of the City staff is instructive to other cities and counties about the need to be fully informed when a renewable project developer approaches them about land or power deals. In this case the City gave away the potential for gaining tens of millions of dollars.

The agreement was negotiated in a series of closed sessions starting December 17 and approved in a rush under the premise that the project faced an April 15 deadline for submitting its interconnection application to the California Independent System Operator (CAISO). The deal immediately unleashed a storm of outrage from many knowledgeable citizens (several who are appointed city commission members) and the City responded soon after with a press release and “Q&A” that did little to quell the uproar. Two City Councilmembers then wrote an additional defense of the deal. The City’s Utilities Commission voted 5-2 to recommend that the City Council rescind the agreement. A request to “cure and correct” under the Brown Act was then filed April 23 by a group of citizens (including me).

Ashley Feeney, City Assistant City Manager, claimed at the Utilities Commission special meeting April 22 that the BrightNight lease option agreement and term sheet have “favorable terms to the City.”  No doubt it’s favorable to the developer — a low-cost lease option and lease terms at the average rate for agricultural use for a multi-million dollar solar energy project with no strings attached. The staff’s naivete comes through a close reading of the entire agreement.

What are so many people missing that makes this project so favorable to the City as the Council and staff claim? While the process of signing the lease option agreement with the developer was (a) unnecessarily secretive, (b) precluded useful citizen input, and (c) likely violated state law in several ways— at its core, the agreement is simply a bad deal. The City either failed to carry out its due diligence, or was seriously misled by the developer, or both. As a result, the City likely gave away millions of dollars over the next 50 plus years, failed to guarantee any clean energy for the City and failed to protect the City fully at the end of the project life. While the City may desire local renewable power, the agreement lacks any real commitment to advance the City’s climate goals while gaining local benefits.

The agreement (1) underprices both the lease option and the lease prices relative the actual value to the developer, (2) lacks any guarantee of plant power being sold to Davis or VCEA, much less at favorable terms, (3) lacks appropriate protection that sufficient funds will be available to decommission the plant, and (4) forsakes opportunities for more valuable alternative uses for those parcels for at least the next five years.

The first of those misunderstandings was that there was, in fact, no need for the developer to have site control for the CAISO interconnection process.  Whatever developer’s “standard” practice is has no bearing on how and what the City should decide in its own interest. The CAISO interconnection process requires either (1) a $250,000 refundable deposit regardless of site control plus a $150,000 study deposit, if the project is submitting under the Cluster application which is due by April 15, or (2) with site control there is no deposit except the same $150,000 study deposit under the Independent Study Process and no deadline. In this case, the City has essentially gifted the developer $225,000 by providing site control at a steep discount. The developers appears to have exploited the City’s lack of knowledge about the interconnection process by conflating the two processes.

Instead the City should have priced the lease option to reflect the developer’s value, not the City’s. That means that handing over the site control was worth the avoided carrying cost of that deposit each year. With a standard rate of return of at least 10% on real estate investments, that amounts to $25,000 per year, which translates into $106 per acre.  In any case, the minimum opportunity cost to the City is either using it for annual row crop agriculture or reflecting the delay in other uses such as organic waste processing, both of which far exceed the $20 per acre in the lease option.

The City should have specified that the project sell output only to either the City or Valley Clean Energy Authority (VCEA) at a favorable price. The developer is now in the driver’s seat and can solicit bids from the entire range of utilities and load-serving entities such as PG&E, SMUD and other CCAs. This will make the cost of this power more expensive even if Davis or VCEA wins the power output. But now that the agreement has been executed, the City no longer has any leverage in either the lease terms or an energy sale to VCEA, because it cannot force the developer into an agreement.

The City could have specified that the output be wheeled to City accounts through PG&E’s RES-BCT tariff that is available to public agencies. A wholesale solar power contract for the project is unlikely to be much more than 5 cents per kilowatt-hour. In contrast, if the project was structured to take advantage of the the power savings under RES-BCT would amount to over 8 cents per kilowatt-hour—at least 60% higher. (At least 35 megawatts is still available for subscription.) This benefit amounts to over $1.2 million per year at current PG&E rates, compared to an expected annual lease payment under the current lease agreement ranging from $40,000 to $80,000. The gain in value over 50 years could be $52 million in nominal dollars or $21 million in net present value. That delivers an equivalent to a lease rate of $5,000 per acre, not $340 or less.

Even if the City did not use the power output, it should have negotiated a lease price based on either (1) the value of rezoned commercial and industrial land since the developer would have to get that zoning designation to develop its project elsewhere, or (2) the highest agricultural value (not the average for the county). For agricultural land, the value a City commissioner and orchard farmer has calculated is $1,688 to $2,250 per acre, or four to five times higher than the rate that the City negotiated based on a naïve calculation.

Further, the term sheet specifies that the developer pay the property taxes. However, the value of the parcels will not increase if the project is built prior to the 2025 because of the solar property exclusion in state law. The County will receive a short term boost in sales tax revenues from plant construction, but the City will not receive any share of that since its outside City boundaries. The City could have negotiated an in-lieu payment from the developer based on the added property value.

While the lease agreement pays lip service to the developer’s responsibility for decommissioning and disposing of the project at the end of its useful life, the term sheet has no provision prohibiting the developer from declaring bankruptcy for its limited liability corporation (LLC) and just walking away. Since the project will have no income at the end its life, and the entity owning the plant is legally separate from primary development firm (or its successor), the obvious step is to simply dissolve the LLC through a bankruptcy.  Such a step would leave the plant for the City to dispose of at significant expense (likely more than $1 million at today’s prices.)  This will wipe out half of the current lease revenues. That is the route that PG&E Corporation took in 2001 when its subsidiary, Pacific Gas and Electric Company, declared bankruptcy in 2001, leaving the bill of the energy crisis to ratepayers instead of shareholders. The City failed to require a surety bond that would cover those costs. Such bonds or other endowments are typical for projects of this type.

An additional consideration that appears to have been ignored is that The City has been looking at other higher value uses of the site such as organics waste disposal or habitat preservation and restoration. These have been under study at several City Commissions, but now those efforts have been aborted.

Finally, some of have defended maintaining the agreement because abrogating it could expose the City to significant legal liability. The developer at this time cannot sue for more than its demonstrated losses, and since it does not yet have a power purchase agreement, it has no future income stream to point to. At most, the liability is the $150,000 deposit with the CAISO  plus a few thousand dollars expended preparing and submitting the interconnection application (which in fact can be remediated with a $250,000 refundable deposit).

The agreement still faces several hurdles including whether the process violated California’s Brown Act, approval with any Yolo County zoning changes, conformance between the agreement and CAISO interconnection requirements, and winning with an RFO bid.

Even if the City believes that it is compelled to go forward with this agreement, it should admit that it made a series of serious mistakes and needs to review its practices and processes that caused this mess. Unfortunately, it does not seem that the City could have done any worse in these negotiations.

Richard McCann testified at the California Public Utilities Commission on behalf of Santa Clara and San Joaquin counties about their RES-BCT projects, and analyzed solar net metering arrangements for agricultural and mobilehome park clients. He evaluated the fiscal impacts of solar projects on San Luis Obispo, San Benito and Inyo counties, and projected the costs of the Desert Renewable Energy Conservation Plan for the California Energy Commission. He is a member of the Natural Resources Commission, former member of the Utilities Commission, and was recently recognized with  the City’s 2020 Environmental Recognition Award for serving on the Technical Advisory Subcommittee of the Community Choice Energy Advisory Committee, leading to formation of Valley Clean Energy.

Victory for mobilehome park residents and owners

The California Public Utilities Commission (CPUC) authorized the continuance for the next 10 years of the program that converts ownership of privately-held utility systems in mobilehome parks to that of investor-owned energy utilities, including Pacific Gas & Electric, Southern California Edison, San Diego Gas and Electric and Southern California Gas. Of the 400,000 mobilehome spaces in California, over 300,000 are currently served by “master metered” systems that are owned and maintained by the park owner.

Most of these systems were built more than 40 years ago, although many have been replaced periodically. This program aims to transfer all of these systems to standard utility service. Due to the age of these systems, some engineered to only last a dozen years initially because these parks were intended as “transitional” land uses, concerns about safety have been paramount. This program will bring these systems up to the standards of other California ratepayers.

Along with improved safety, residents will gain greater access to energy efficiency and other energy management programs that they already fund at the utilities, and smoother billing. Residents also will have access to time of use rates that has been precluded by the intervening master meter. Park owners will avoid the increasing complexity of billing, system maintenance and safety inspections and filings, and future costs of system replacement. In addition, park owners have been inadequately compensated through utility rates for maintaining those systems, and have resistance in recovering related costs through rents.

I have been working with one of my clients, Western Manufactured Housing Communities Association (WMA) since 1997 to achieve this goal. The momentum finally shifted in 2014 when we convinced the utilities that making these investments could be profitable. First athree-year pilot program was authorized, and this recent decision builds on that.