Category Archives: Water resources management

How to allocate our scarce most precious resource

Moving forward on Flood-MAR with pilots

The progress on implementing floodwater managed aquifer recharge programs (Flood-MAR) reminds me of the economist’s joke, “sure it works in practice, but does it work in theory?” A lot of focus seems to be on trying to refine the technical understanding of recharge, without going with what we already know about aquifer replenishment from decades of applications.

The Department of Water Resources Flood-MAR program recently held a public forum to discuss its research program. I presented a poster (shown above) on the findings of a series of studies we conducted for Sustainable Conservation on the economic and financial considerations for establishing these programs. (I posted about this last February.)

My conclusion from the presentations and the other publications we’ve followed is that the next step is to set up pilots using different institutional set ups and economic incentives. The scientists and engineers can further refine their findings, but we generally know where the soils are better for percolation versus others, and we know that crop productivity won’t fall too much where fields are flooded. The real issues fall into five categories, of which we’ve delved into four in our Floodwater Recharge Memos.

Benefits Diagrams_Page_5

The first is identifying the beneficiaries and the potential magnitude of those benefits. As can be seen in the flow chart above, there many more potential beneficiaries than just the local groundwater users. Some of these benefits require forecast informed reservoir operations (FIRO) to realize those gains through reduced flood control space, increased water supply storage and greater summertime hydropower output. Flood-MAR programs can provide the needed margin of error to lower the risk from FIRO.

FloodMAR Poster - Financing

The second is finding the funding mechanisms to compensate growers or to build dedicated recharge basins. We prepared a list of potential financing mechanisms linked to the potential beneficiaries. (This list grew out of another study that we prepared for the Delta Protection Commission on feasible options for beneficiary-pays financing.)

FloodMAR Poster Incentives

The third is determining what type of market incentive transactions mechanisms would work best at attracting the most preferred operations and acreage. I have explored the issues of establishing unusual new markets for a couple of decades, including for water rights transfer and air quality permit trading. It is not a simple case of “declaring markets exist” and then walking away. Managing institutions have important roles in setting up, running and funding any market, and most particularly for those that manage what were “public goods” that individuals and firms were able to use for free. The table above lists the most important considerations in establishing those markets.

The fourth assessing what type of infrastructure investment will produce the most cost-effective recharge. Construction costs (which we evaluated) is one aspect, and impacts on agricultural operations and financial feasibility are other considerations. The chart at the top summarizes the results from comparing several case studies. These will vary by situation, but remarkably, these options appear to cost substantially less than any surface storage projects currently being proposed.

The final institutional issue to be addressed, but not the least important, is determining the extent of rights over floodwaters and aquifers. California state law and regulations are just beginning to grapple with these issues. Certain areas are beginning to assert protection of their existing rights. This issue probably represents the single biggest impediment to these programs before attracting growers to participate.

All of these issues can be addressed in a range of pilot programs which use different variables to test which are likely to be more successful. Scientists and engineers can use these pilots to test for the impacts of different types of water diversion and application. Statistical regression analysis can provide us much of what we know without having to understand the hydrological dynamics. Legal rights can be assessed by providing temporary permits that might be modified as we learn more from the pilots.

Is it time to move forward with local pilot programs? Do we know enough that we can demonstrate the likely benefits? What other aspects should we explore before moving to widespread adoption and implementation?

A transparent municipal utility’s reserve target

Reserves chart

As one of my civic activities, I sat on the City of Davis Utility Rates Advisory Commission. In my final action with that commission, along with Elaine Roberts-Musser and Lorenzo Kristov, we prepared what might be a first-of-its kind enterprise fund reserve policy for the four utilities managed by the city. Up to this point, the URAC had been presented with rates development reports that appeared to use somewhat arbitrary, and inconsistent, methods of setting reserve targets. The city also appeared to be holding tens of millions of dollars in those funds that might be unneeded to meet expected reserve requirements.

With the City Council’s approval and support from the staff and the Finance and Budget Commission, we identified the elements that needed to be covered by reserves, including working capital, debt covenants, unanticipated capital replacements, and revenue-expense volatility. The first two elements were fairly straightforward to calculate, and unanticipated replacements didn’t appear to be significant. It was the analysis of the relationship of revenue and expense volatility where the report innovates. Previous studies had used some variation of a percentage of capital assets with no underlying explanation. Our solution was to derive an estimate of the outerbound of an annual revenue shortfall for a utility as buffer to allow rate or management adjustments.

In the end, the target reserves generally didn’t change much, but the City now has a transparent target that it can use to determine when it has excess funds that might be used in different fashions instead.

Using floods to replenish groundwater

ALMOND  ORCHARD FLOODING

M.Cubed produced four reports for Sustainable Conservation on using floodwaters to recharge aquifers in California’s Central Valley. The first is on expected costs. The next three are a set on the benefits, participation incentives and financing options for using floodwaters in wetter years to replenish groundwater aquifers. We found that costs would range around $100 per acre-foot, and beneficiaries include not only local farmers, but also downstream communities with lower flood control costs, upstream water users with more space for storage instead of flood control, increased hydropower generation, and more streamside habitat. We discussed several different approaches to incentives based on our experience in a range of market-based regulatory settings and the water transfer market.

With the PPIC’s release of Water and the Future of the San Joaquin Valley, which forecasts a loss of 500,000 acres of agricultural production due to reduced groundwater pumping under the State Groundwater Management Act (SGMA), local solutions that mitigate groundwater restrictions should be moving to the fore.

Don Cameron at Terranova Ranch started doing this deliberately earlier this decade, and working with Phil Bachand and UC Davis, more study has shown the effectiveness, and the lack of risk to crops, from this strategy. The Department of Water Resources has implemented the Flood-MAR program to explore this alternative further. The Flood-MAR whitepaper explores many of these issues, but its list of beneficiaries is incomplete, and the program appears to not yet moved on to how to effectively implement these programs integrated with the local SGMA plans. Our white papers could be useful starting points for that discussion.

(Image Source: Chico Enterprise-Record)

 

 

 

Another finding of the obvious from academics…

361063-crop-field

This study published in the American Journal of Agricultural Economics seems to have a surprising finding, at least to academic economists, that farmers with riskier water supplies rely less on irrigation! What? If you’re uncertain about whether you will get water every year, you are less likely to count on that water to irrigate your crops? Who possibly would think that way?

Not so bad in our estimate…

fort-lauderdale-sprinklers-960x500_c

The University of California ARE Update published a short study that found that the drought emergency regulations adopted by the State Water Resources Control Board were only 18% more costly than the most “efficient” standards. In May 2015, the State Water Resources Control Board adopted Resolution No. 2015-0032 which imposed restrictions to reduce water use by local agencies by 4 to 36 percent depending on their circumstances. Northern California agencies were to reduce usage by 16.2 percent on average, while Southern California utilities were to reduce by 22.5 percent. In the end, Northern California utilities far exceeded their target with a 23.3 percent reduction, and Southern California’s just missed theirs with an average of 21.4 percent. M.Cubed conducted the economic study of the regulations, and found that the insurance benefits were likely substantial enough to justify the costs.

The real headline of the study should be “Drought regulations remarkably efficient!” Given that the regulations were developed in just a few months and that they were done on a prospective basis with uncertainties and unknowns (e.g., the price elasticities referenced in the study), missing the mark by only 18% is truly remarkable. In comparison, the California Air Resources Board may have missed the mark by more than 100% in setting out its AB 32 Greenhouse Gas Reduction Scoping Plan in 2008 by relying too heavily on mandated measures such as renewables generation and certain types of energy efficiencies instead of more effective market based measures.

Nevertheless, the study appears to the make mistake of making the classic economist’s joke “sure it works in practice, but does it work in theory?” Consumers are chastised for behavior that doesn’t fit the fitted values for price elasticities. The study compares the mandated and achieved reductions and notes that achieved reductions were more even across agencies than the mandates. Agencies with lower mandates achieved higher reductions, and those with higher mandates fell short on achievements. Instead of questioning the original price elasticity estimates–and such estimates commonly have a wide range and are often situation specific–the report just plows ahead as though these theoretical results should have driven human behavior.

The more interesting question the researchers should have asked given the consistent patterns in achieved versus mandated reductions is what factors caused these agencies to diverge from the mandates. Geography is clearly only part of the reason. It also appears that there is not as much “demand hardening” at the low end of use, and a higher premium put on water uses at the upper end. These factors have implications for how we should modify our price elasticity estimates.

Building Drought Resilience in California’s Cities and Suburbs from PPIC

Then And Now: California's Drought Officially Declared To Be Over

M.Cubed partner David Mitchell is the lead author on this PPIC report that reviews the responses by urban agencies to the California’s recent drought and looks at the lessons learned. He’s speaking during a webinar on June 16 at noon. In addition, he co-authored an opinion article for the Sacramento Bee.

Repost: Learn Liberty | Blame outdated rights for California’s water woes.

A good explanation of how regulation differs from litigation, and how California’s water rights differ from other systems.

Source: Learn Liberty | Blame outdated rights for California’s water woes.