Category Archives: Water resources management

How to allocate our scarce most precious resource

A transparent municipal utility’s reserve target

Reserves chart

As one of my civic activities, I sat on the City of Davis Utility Rates Advisory Commission. In my final action with that commission, along with Elaine Roberts-Musser and Lorenzo Kristov, we prepared what might be a first-of-its kind enterprise fund reserve policy for the four utilities managed by the city. Up to this point, the URAC had been presented with rates development reports that appeared to use somewhat arbitrary, and inconsistent, methods of setting reserve targets. The city also appeared to be holding tens of millions of dollars in those funds that might be unneeded to meet expected reserve requirements.

With the City Council’s approval and support from the staff and the Finance and Budget Commission, we identified the elements that needed to be covered by reserves, including working capital, debt covenants, unanticipated capital replacements, and revenue-expense volatility. The first two elements were fairly straightforward to calculate, and unanticipated replacements didn’t appear to be significant. It was the analysis of the relationship of revenue and expense volatility where the report innovates. Previous studies had used some variation of a percentage of capital assets with no underlying explanation. Our solution was to derive an estimate of the outerbound of an annual revenue shortfall for a utility as buffer to allow rate or management adjustments.

In the end, the target reserves generally didn’t change much, but the City now has a transparent target that it can use to determine when it has excess funds that might be used in different fashions instead.


Using floods to replenish groundwater


M.Cubed produced four reports for Sustainable Conservation on using floodwaters to recharge aquifers in California’s Central Valley. The first is on expected costs. The next three are a set on the benefits, participation incentives and financing options for using floodwaters in wetter years to replenish groundwater aquifers. We found that costs would range around $100 per acre-foot, and beneficiaries include not only local farmers, but also downstream communities with lower flood control costs, upstream water users with more space for storage instead of flood control, increased hydropower generation, and more streamside habitat. We discussed several different approaches to incentives based on our experience in a range of market-based regulatory settings and the water transfer market.

With the PPIC’s release of Water and the Future of the San Joaquin Valley, which forecasts a loss of 500,000 acres of agricultural production due to reduced groundwater pumping under the State Groundwater Management Act (SGMA), local solutions that mitigate groundwater restrictions should be moving to the fore.

Don Cameron at Terranova Ranch started doing this deliberately earlier this decade, and working with Phil Bachand and UC Davis, more study has shown the effectiveness, and the lack of risk to crops, from this strategy. The Department of Water Resources has implemented the Flood-MAR program to explore this alternative further. The Flood-MAR whitepaper explores many of these issues, but its list of beneficiaries is incomplete, and the program appears to not yet moved on to how to effectively implement these programs integrated with the local SGMA plans. Our white papers could be useful starting points for that discussion.

(Image Source: Chico Enterprise-Record)




Another finding of the obvious from academics…


This study published in the American Journal of Agricultural Economics seems to have a surprising finding, at least to academic economists, that farmers with riskier water supplies rely less on irrigation! What? If you’re uncertain about whether you will get water every year, you are less likely to count on that water to irrigate your crops? Who possibly would think that way?

Not so bad in our estimate…


The University of California ARE Update published a short study that found that the drought emergency regulations adopted by the State Water Resources Control Board were only 18% more costly than the most “efficient” standards. In May 2015, the State Water Resources Control Board adopted Resolution No. 2015-0032 which imposed restrictions to reduce water use by local agencies by 4 to 36 percent depending on their circumstances. Northern California agencies were to reduce usage by 16.2 percent on average, while Southern California utilities were to reduce by 22.5 percent. In the end, Northern California utilities far exceeded their target with a 23.3 percent reduction, and Southern California’s just missed theirs with an average of 21.4 percent. M.Cubed conducted the economic study of the regulations, and found that the insurance benefits were likely substantial enough to justify the costs.

The real headline of the study should be “Drought regulations remarkably efficient!” Given that the regulations were developed in just a few months and that they were done on a prospective basis with uncertainties and unknowns (e.g., the price elasticities referenced in the study), missing the mark by only 18% is truly remarkable. In comparison, the California Air Resources Board may have missed the mark by more than 100% in setting out its AB 32 Greenhouse Gas Reduction Scoping Plan in 2008 by relying too heavily on mandated measures such as renewables generation and certain types of energy efficiencies instead of more effective market based measures.

Nevertheless, the study appears to the make mistake of making the classic economist’s joke “sure it works in practice, but does it work in theory?” Consumers are chastised for behavior that doesn’t fit the fitted values for price elasticities. The study compares the mandated and achieved reductions and notes that achieved reductions were more even across agencies than the mandates. Agencies with lower mandates achieved higher reductions, and those with higher mandates fell short on achievements. Instead of questioning the original price elasticity estimates–and such estimates commonly have a wide range and are often situation specific–the report just plows ahead as though these theoretical results should have driven human behavior.

The more interesting question the researchers should have asked given the consistent patterns in achieved versus mandated reductions is what factors caused these agencies to diverge from the mandates. Geography is clearly only part of the reason. It also appears that there is not as much “demand hardening” at the low end of use, and a higher premium put on water uses at the upper end. These factors have implications for how we should modify our price elasticity estimates.

Building Drought Resilience in California’s Cities and Suburbs from PPIC

Then And Now: California's Drought Officially Declared To Be Over

M.Cubed partner David Mitchell is the lead author on this PPIC report that reviews the responses by urban agencies to the California’s recent drought and looks at the lessons learned. He’s speaking during a webinar on June 16 at noon. In addition, he co-authored an opinion article for the Sacramento Bee.

Repost: Learn Liberty | Blame outdated rights for California’s water woes.

A good explanation of how regulation differs from litigation, and how California’s water rights differ from other systems.

Source: Learn Liberty | Blame outdated rights for California’s water woes.

Thoughts on “California’s Water System Built for a Climate We No Longer Have” | KQED Science

We just looked at the frequency of different water conditions over the last 15, 35 and 110 years. Over the longer period, wet, “normal” or average, and dry years have occurred in about equal shares, at about one-third each. But over the last 35 years dry conditions have occurred in about half of the years. Over the last 15 years, wet conditions have declined to less than 20% of the years.

We’re also working with Sustainable Conservation on a program that will incentivize growers to use diverted floodwaters to recharge groundwater aquifers below their fields.

California is likely to see more extreme floods and drought with climate change, but the state’s water infrastructure may not be ready.

Source: California’s Water System Built for a Climate We No Longer Have | KQED Science