Tag Archives: electricity rates

CPUC proposes radical restructuring of PG&E

104778251-gettyimages-861000956In PG&E’s safety order institution investigation (OII), outgoing CPUC President Michael Picker (along with senior administrative law judge Peter Allen) has put on the table four dramatic proposals to address governance and incentive issues at the utility. These proposals are:

  1. Separating PG&E into separate gas and electric utilities or selling the gas assets;
  2. Establishing periodic review of PG&E’s Certificate of Convenience and Necessity (CPCN);
  3. Modification or elimination of PG&E Corp.’s holding company structure; and
  4. Linking PG&E’s rate of return or return on equity to safety performance metrics.

The OII originally was opened to investigate PG&E’s management of its natural gas infrastructure, but the series of electricity-sparked wildfires reinfused the OII with a new direction. The proceeding has been a forum for various dramatic proposals on how to handle wildfire-related issues and PG&E’s subsequent bankruptcy filing.

 

Advertisements

Not grasping the concept: PG&E misses the peak load shift

Utility peak shifted by solar graph

PG&E in its 2020 ERRA Forecast Proceeding testimony wrote “however, BTM DG [behind the meter distributed generation] has a limited impact to the annual system peak as customer-owned solar photovoltaic (PV) generation is minimal during the peak hour of 7 p.m.” Uh, how does PG&E know that customer-owned solar doesn’t contribute to reducing the system peak if PG&E does not meter that generation?

PG&E actually has it wrong. Customer-owned solar has in fact reduced the former pre-solar peak that used to occur between 2 and 4 p.m. The metered load that PG&E can see, which is customer usage minus solar output (BTM DG), has shifted its apparent peak from 4 p.m. to 7 p.m.–3 hours. The graphic above illustrates how this shift has occurred. (PG&E produced a similar chart of its 2016 loads in its TOU rate rulemaking.) So BTM DG has had a profound impact on the annual system peak.

U. of Chicago misses mark on evaluating RPS costs

08_us_net_electricity_generation_by_fuel_source_1080_604_80

The U. of Chicago just released a working paper “Do Renewable Portfolio Standards Deliver?” that purports to assess the added costs of renewable portfolio standards adopted by states. The paper has two obvious problems that make the results largely useless for policy development purposes.

First, it’s entirely retrospective and then tries to make conclusions about future actions. The paper ignores that the high initial costs for renewables was driven down by a combination of RPS and other policies (e.g. net energy metering or NEM), and on a going forward basis, the renewables are now cost competitive with conventional resources. As a result, the going forward cost of GHG reductions is much smaller than the historic costs. In fact, the much more interesting question is “what would be the average cost of GHG reductions by moving from the current low penetration rate of renewables to substantially higher levels across the entire U.S., e.g., 50%, 60% etc. to 100%?” The high initial investment costs are then highly diluted by the now cost effective renewables.

Second, the abstract makes this bizarre statement “(t)hese cost estimates significantly exceed the marginal operational costs of renewables and likely reflect costs that renewables impose on the generation system…” Um, the marginal “operational” costs of renewables generally is pretty damn close to zero! Are the authors trying to make the bizarre claim (that I’ve addressed previously) that renewables should be priced at their “marginal operational costs”? This seems to reflect an remarkable naivete on the part of the authors. Based on this incorrect attribution, the authors cannot make any assumptions about what might be causing the rate difference.

Further, the authors appear to attribute the entire difference in rates to imposing an RPS standard. The fact is that these 29 states generally have also been much more active in other efforts to promote renewables, including for customers through NEM and DER rates, and to reduce demand. All of these efforts reduce load, which means that fixed costs are spread over a fewer amount of kilowatt-hours, which then causes rates to rise. The real comparison should be the differences in annual customer bills after accounting for changes in annual demand.

The authors also try to assign stranded cost recovery as a cost of GHG recovery. This is a questionable assignment since these are sunk costs which economists typically ignore. If we are to account for lost investment due to obsolescence of an older technology, economists are going to have go back and redo a whole lot of benefit-cost analyses! The authors would have to explain the special treatment of these costs.

Why do economists keep producing these papers in which they assume the world is static and that the future will be just like the past, even when the evidence of a rapidly changing scene is embedded in the data they are using?

The Business Roundtable takes the wrong lesson from California’s energy costs

solar-panel-price-drop-global-solar-installations-bnef

The California Business Roundtable authored an article in the San Francisco Chronicle claiming that the we only need to look to California’s energy prices to see what would happen with the “Green New Deal” proposed by the Congressional Democrats.

That article has several errors and is misleading in others aspects. First, California’s electricity rates are high because of the renewable contracts signed nearly a decade ago when renewables were just evolving and much higher cost. California’s investment was part of the reason that solar and wind costs are now lower than existing coals plants (new study shows 75% of coal plants are uneconomic) and competitive with natural gas. Batteries that increase renewable operations have almost become cost effective. It also claims that reliability has “gone down” when in fact we still have a large reserve margin. The California Independent System Operator in fact found a 23% reserve margin when the target is only 17%. We also have the ability to install batteries quickly to solve that issue. PG&E is installing over 500 MW of batteries right now to replace a large natural gas plant.

For the rest of the U.S., consumers will benefit from these lower costs today. Californians have paid too much for their power to date, due to mismanagement by PG&E and the other utilities, but elsewhere will be able to avoid these foibles.

(Graphic: BNEF)