Tag Archives: energy economics

Citigroup climate risk study part 2 – stranded assets

The CitiGPS study makes a unique contribution to the climate change risk literature: reducing GHG emissions will lead to stranded investment assets. These assets include both fossil fuel holdings and the equipment that uses those fuels. Protecting those investments is at the heart of much of the resistance to addressing climate change risk.  Removing political barriers is probably the single greatest difficultly in moving to implement policies to mitigate this risk; many policy proposals are at the ready so there’s no lack there. Given the apparent urgency of acting, perhaps it’s time to ask the question whether these asset owners should be compensated by those who will benefit directly, i.e., the rest of us? 

What’s behind the reluctance of political actors to propose this type of solution is the belief in the underlying premise of benefit-cost analysis. Economists have unfortunately perpetuated a misconception on the public that so long as total societal benefits exceed costs, a policy is justified even if those suffering those costs are not compensated for their losses. The basis of this is the Kaldor-Hicks efficiency criterion. In contrast, market transactions are presumed to only occur if both parties gain through Pareto efficiency--one party fully compensates the other one for the transaction. Public policy now casts aside this compensation requirement. Unfortunately this leads to significant redistribution impacts that are too often left unexamined. And of course, the losers resist these policies, with a ferocity that is accentuated by both loss aversion (where potential losses are felt more strongly than gains) and that these losses are usually concentrated among a smaller group of individuals than the spread of the benefits.

Too often public agencies are running over these interests to push for societal benefits without compensating the losers. A recent example that I was involved with was the adoption by the California Air Resources Board of the in-use off-road diesel engine regulations. CARB mandated the premature scrappage of construction equipment that had been purchased to comply with previous regulatory mandates from CARB and the US EPA. CARB claimed societal air quality benefits of $13 billion at the cost of $3 billion to the construction industry. Yet CARB never proposed to pay the owners of the equipment for their lost investments. GHG regulation is proceeding down the same path.

If the benefits truly justify adopting a policy, and GHG reductions certainly appear to meet that criterion, then society should be willing to compensate those who made investments under the previous policy environment that endorsed those investments. Certainly there’s questions about whether those investors truly had property rights in the resources they used, but that issue should be addressed directly, not as an implicit assumption that no such property rights ever existed. (This question about property rights has been raised in regulating California’s water use.) Too often policy proponents conflate a goal of an improved environment with goals to redistribute wealth. By jumping over the property rights question, wealth also can be redistributed implicitly. Societal equity issues are important, but they shouldn’t be achieved through backdoor measures that make all of us worse off. Requiring politicians and bureaucrats to consider the actual cost of their policy proposals will make us all better off, and maybe even remove obstacles to a better environment.

Decoupling of economic and electricity demand growth

After posting a dire report about the lack of cost-effectiveness for energy efficiency, I came across this more encouraging graphic. It shows that as national economies become wealthier, the electricity consumption growth rate declines. So we won’t be on a never ending treadmill.

Electricity-GDP

A shocking finding on energy efficiency cost effectiveness

A study just released from the E2e Project finds that the investment costs in residential energy efficiency greatly exceed the realized benefits.  Earlier the same research program found that even if the energy efficiency measure packages, costing up to $5,000, were given away for free, only 6% of low income homeowners would participate. This is one of the first projects to track from start to finish a full set of energy efficiency projects. Much controversy has swirled around the accuracy of the engineering calculations used to estimate energy savings, and whether market barriers are impeding participation in what appears to be obvious cost saving actions. This study calls into question the premise of “costlessly” promoting energy efficiency actions.

The Project is run jointly by the University of California’s Energy Institute at Haas, the University of Chicago’s EPIC, and MIT.

SANDAG, Executive Orders and California Policies

In a rather earthshaking ruling, California’s Fourth District Court of Appeals ruled that the San Diego Association of Governments (SANDAG) must comply with the Governor Schwarzenegger’s Executive Order S-3-05 to “by 2050, reduce GHG emissions to 80 percent below 1990 levels.” SANDAG had completed its 2050 Regional Transportation Plan using AB 32 as its primary compliance hurdle. AB 32 “requires California to reduce its GHG emissions to 1990 levels by 2020.” SB 375 required that metropolitan planning organizations (MPOs) such as SANDAG develop sustainable community strategies (SCS) that reduce GHG emissions by an amount allocated by the California Air Resources Board to each MPO.  SANDAG’s RTP is its SCS.

This is the first time that an EO has been held at legally binding on local agency actions. Governors have issued plenty of EOs before but they’ve been taken as providing policymaking and rulemaking guidance to the Governor’s appointees in various agencies. This decision raises the question whether those other EOs will now carry much more weight? And if governors issue conflicting EOs, which one is currently in force? What if an EO conflicts with state law passed by the Legislature?

On climate change, governors have issued seven such EOs. The Governor recently issued an EO calling for substantial water use reductions in the drought. Is the EO from 2008 still in force?  The Energy Action Plan EO from 2004 calls for several specific actions by state agencies, many of them undertaken but necessarily on the timeline specified. Should the 33% renewable portfolio standard (RPS) be implemented along the lines of state law or the EO? A bit of research could show many more of these types of examples.

SANDAG is appealing the decision the State Supreme Court. How various interests align will be interesting.

Three key steps in designing rates for solar power

KQED posted a good summary of how solar power is driving the residential rate design rulemaking at the CPUC. (M.Cubed works for EDF there.) I offer three steps that should be taken to address the issues of how to change ratemaking for a changing energy marketplace:

1) Consumers should see time varying prices (time of use or TOU being among that menu). Tiered rates make it impossible to see the current price for consumption, and tiered rates have been shown not to induce any additional conservation across the customer base. Consumer surveys show that customers want more control over their electricity use and the price signals to direct them.

2) Consumers should be offered a meaningful menu of rate options. This means rates that differ in risk exposure both over time of day and time horizon. Customers should be able to hedge against peak day prices or participate in demand response. They should be able to accept changes in hourly prices or buy a multi-year contract. Utilities already offer these contract options to their suppliers; why not treat their customers as they they are valued?

3) Any calculation of grid costs and responsibility should reflect the changing demand by consumers. The grid charges proposed by the utilities assume that future consumers will install the same-sized equipment as they do today and that they will consume in the same pattern. Solar panels are ready today to “island” a home from the network, and EV charging could create greater load diversity even at the circuit level. That will radically change utility investment. The distribution planning rulemaking is an important step toward resolving that issue but the CPUC hasn’t yet linked the proceedings.

Only the first issue is being addressed head on in the rulemaking and it hasn’t really delved into the importance of emerging consumer choice.

RFF: Seminar 12/3/14 on China’s cap & trade pilot programs

I had not realized that China has been running 3 pilot cap & trade projects. Resources for the Future is hosting a seminar/webinar December 3 exploring China’s efforts:

http://www.rff.org/Events/Pages/Carbon-Cap-and-Trade-in-China.aspx

Repost: Deconstructing the Rosenfeld Curve

Deconstructing the Rosenfeld Curve.

By Lucas Davis on Energy Insitute at Haas

Are California’s energy efficiency standards a useful rubric for other states?

Will “optimal location” become the next “least-cost best-fit”?

At the CPUC’s first workshop on distribution planning, the buzz word that came up in almost every presentation was “optimal location.” But what does “optimal location” mean? From who’s perspective? Over what time horizon? Who decides? The parties gave hints of where they stand and they are probably far apart.

Paul De Martini gave an overview of the technical issues that the rulemaking can address, but I discussed earlier, there’s a set of institutional matters that also must be addressed. Public comment came back repeatedly to these questions of:  who should be allowed into the emerging market with what roles, and how will this OIR be integrated with the multitude of other planning proceedings at the CPUC? I’ll leave a discussion of those topics to another blog.

The more salient question is defining “optimal location.” I’m sure that it sounded good to legislators when they passed AB 327, but as with many other undefined terms in the law, the devil is in the details. “Least cost-best fit” for evaluating new generation resources similarly sounds like “mom and apple pie” but has become almost meaningless in application at the CPUC in the LTPP and RPS proceedings. Least cost best fit has just led to frustration for both many developers of innovative or flexible renewables such as solar thermal and geothermal, and for the utilities who want these resources.

SCE and SDG&E were quite clear about how they saw optimal location would be chosen: the utility distribution planners would centrally plan the best locations and tell customers. Exactly HOW they would communicate these choices was vague.

Many asked how project developers and customers might know where to find those optimal locations among the utilities’ data. Jamie Fine of EDF might have had the best analogy. He said he now lives in a house that clearly needs a new paint job, so painters drop flyers on his doorstep and not on his neighbors who’s paint is not peeling. Fine asked, “when will the utilities show us where the paint is peeling in their distribution systems?” His and others’ questions call out for a GIS tool that be publicly viewed, maybe along the view of the ICF tool recently presented.

I can think of a number of issues that will affect choices of optimal locations, many of them outside of what a utility planner might consider. The theme of these choices is that it becomes a decentralized process made up of individual decisions just as we have in the rest of the U.S. market place.

  • Differences in distributed energy resource characteristics, e.g., solar vs. bioenergy;
  • Regional socio-economic characteristics to assess fairness and equity;
  • Amount of stranded investment affected;
  • The activities and energy uses both of the host site, neighboring co-users/generators, and surrounding environs;
  • Differences in valuation of reliability by different customers;
  • Interaction with local government plans such as achieving climate action goals under SB 375.
  • Opportunities for new development compared to retrofitting or replacing existing infrastructure.

In such a complex world, the utilities won’t be able to make a set of locational decisions across their service territory simply because they won’t be able to comprehend this entire set of decision factors. It’s the unwieldly nature of complex economies that brings down central planning–it’s great in theory, but unworkable in practice. The utilities can only provide a set of parameters that describe a subset of the optimal location decisions. State and local governments will provide another subset. Businesses and developers yet another set and finally customers will likely be the final arbiters if the new electricity market is to thrive.

As a final note, opening up information about the distribution system (which the utilities have jealously guarded for decades) offers an opportunity to better target other programs as well such as energy efficiency and the California Solar Initiative. Why should we waste money on air conditioning upgrades in San Francisco when they are much more needed in Bakersfield? The CPUC has an opportunity to step away from a moribund model in more than distribution planning if it pursues this to its natural conclusion.

Retrospective on restructuring and what it means for our future

Jim Bushnell of UCD and the Energy Institute at Haas has posted about a paper he is coauthoring with Severin Borenstein looking back 20 years at restructuring. It has some interesting insights, but I take issue with a couple points about the original motivation for restructuring, and whether we will be left with legitimate stranded costs with the current transformation.

My comment on the post:

The rationale behind restructuring (as reflected by my agricultural and industrial clients at that time) of “never again”–the utilities had demonstrated an inability to contain costs in constructing Diablo Canyon, SONGS and Helms, and FERC had gutted the ability for third parties to build turnkey plants in the BRPU decision. The utilities were very slow to adopt the low-cost combined cycle technology, so the only solution looked to be to walk away. Restructuring did establish the merchant industry which has been the leaders in developing renewable technologies and even rooftop solar. Again, we could have expected the utilities to drag their feet, so we have gotten institutional innovation that otherwise would not have happened. (Institutional innovation, not technological, is what got us reduced SOx emissions under the Clean Air Act Amendments of 1990.)

Going forward, leaving the utility system only “strands” network infrastructure if we take the static view that the network will continue in its current state. Shareholders are still recovering their investment, and if they’ve been paying attention since 2007, they should know that overall demand has been falling. They will only be stuck with infrastructure costs if either they have had little foresight or if a sudden technological change accelerates customer exit. In the latter situation, this will only occur if distributed resource costs fall dramatically in which case the exit will probably be socially beneficial. Why should consumers be locked into a large scale network to protect shareholders?

Restructuring was marked by a sudden, dramatic change–opening the market on a single day, divesting generation assets within a few months. The current transformation is more gradual because it is house by house, business by business. Utilities can change their investment plans, and depreciation recovery allows them to recoup their past costs. We may be foregoing the benefits of a paid-up network, but we have almost never regretted such technological change in the past. (Maybe the sale of the “red cars” rail system in LA as the most salient exception.) Do we regret that we’ve left behind land lines for our cell phones? Given the benefits of carrying around microcomputers for daily activities, I think not.

Identifying the barriers to transportation fuel diversity

Tim O’Connor of EDF writes about the benefits of transportation diversification at EDF’s California Dream 2.0. I think that fuel diversity is a useful objective, but achieving that will be difficult due to the network externalities inherent in transportation technologies. Gasoline and diesel vehicles became dominant because having single-fuel refueling networks is more cost effective for both vendors and customers, and reduce the search costs for drivers to find those stations. Think of how many fueling stations someone might have to pass to reach their particular energy source. Investing in a particular fuel requires a certain level of revenue. Note how many local gas stations have closed because they didn’t have enough sales.

For a more recent example, we can look at cell phone operating systems. Initially each manufacturer had their own system, but now virtually all phones are driven by two systems, Android and iOS, while Windows 8 keeps trying to make inroads.

We need to be very aware of the fueling network economics when pushing for new transportation energy sources. Investing in a system is as much a set of business decisions as a policy decision. One approach might be to focus on using particular fuels in a narrow set of sectors and discourage broad sector-wide use. Another might be to use a geographic focus and to set up means of interconnecting across those geographies.