Category Archives: Energy innovation

Emerging technologies and institutional change to meet new challenges while satisfying consumer tastes

The two problems to be addressed head on by nuclear power advocates

6e0c32214e80ee9f4fbabf2e4ffe6fcd

Nuclear power advocates bring up the technology as a supposedly necessary part of a zero-GHG portfolio to address climate change. They insist that the “next generation” technology will be a winner if it is allowed to be developed.

Nevertheless, nuclear has two significant problems beyond whatever is in the next generation technology:

  1. Construction cost overruns are the single biggest liability that has been killing the technology. While most large engineering projects have contingencies for 25-30% overruns, almost all nuclear plants have overruns that are multiples of the original cost estimates. This has been driving the most experienced engineering/construction firms into bankruptcies. Until that problem is resolved, all energy providers should be very leery of making commitments to a technology that takes at least 7 years to build.
  2. We still haven’t addressed waste disposal and storage over the course of decades, much less millennia. No other energy technology presents such a degree of catastrophic failure from a single source. Again, this liability needs to be addressed head on and not ignored or dismissed if the technology is to be pursued.
Advertisements

The Business Roundtable takes the wrong lesson from California’s energy costs

solar-panel-price-drop-global-solar-installations-bnef

The California Business Roundtable authored an article in the San Francisco Chronicle claiming that the we only need to look to California’s energy prices to see what would happen with the “Green New Deal” proposed by the Congressional Democrats.

That article has several errors and is misleading in others aspects. First, California’s electricity rates are high because of the renewable contracts signed nearly a decade ago when renewables were just evolving and much higher cost. California’s investment was part of the reason that solar and wind costs are now lower than existing coals plants (new study shows 75% of coal plants are uneconomic) and competitive with natural gas. Batteries that increase renewable operations have almost become cost effective. It also claims that reliability has “gone down” when in fact we still have a large reserve margin. The California Independent System Operator in fact found a 23% reserve margin when the target is only 17%. We also have the ability to install batteries quickly to solve that issue. PG&E is installing over 500 MW of batteries right now to replace a large natural gas plant.

For the rest of the U.S., consumers will benefit from these lower costs today. Californians have paid too much for their power to date, due to mismanagement by PG&E and the other utilities, but elsewhere will be able to avoid these foibles.

(Graphic: BNEF)

Charging with the sun…really!

MITSUBISHI MOTOR SALES OF AMERICA, INC. CYPRESS CHARGING STATION

Severin Borenstein at the University of California’s Energy Institute at Haas posted on whether a consumer buying an electric vehicle was charging it with power from renewables. I have been considering the issue of how our short-run electricity markets are incomplete and misleading. I posted this response on that blog:

As with many arguments that look quite cohesive, it is based on key unstated premises that if called into question undermine the conclusions. I would relabel the “correct” perspective as the “conventional” which assumes that the resources at the margin are defined by short-run operational decisions. This is the basic premise of the FERC-designed power market framework–somehow all of those small marginal energy increases eventually add up into one large new powerplant. This is the standard economic assumption that a series of “putty” transactions in the short term will evolve into a long term “clay” investment. (It’s all of those calculus assumptions about continuity that drive this.) This was questionable in 1998 as it became apparent that the capacity market would have to run separately from the energy market, and is now even more questionable as we replace fossil fuel with renewables.

I would call the fourth perspective as “dynamic”. From this perspective these short run marginal purchases on the CAISO are for balancing to meet current demand. As Marc Joseph pointed out, all of the new incremental demand is being met in a completely separate market that only uses the CAISO as a form of a day to day clearinghouse–the bilateral PPAs. No load serving entity is looking to the CAISO as their backstop resource source. Those long term PPAs are almost universally renewables–even in states without RPS standards. In addition, fossil fueled plants–coal and gas–are being retired and replaced by solar and wind, and that is an additional marginal resource not captured in the CAISO market.

So when a consumer buys a new EV, that added load is being met with renewables added to either meet new load or replace retired fossil. Because these renewables have zero operating costs, they don’t show up in the CAISO’s “marginal” resources for simple accounting reasons, not for fundamental economic reasons. And when that consumer also adds solar panels at the same time, those panels don’t show up at all in the CAISO transactions and are ignored under the conventional view.

There is an issue of resource balancing costs in the CAISO incurred by one type of resource versus another, but that cost is only a subcomponent of the overall true marginal cost from a dynamic perspective.

So how we view the difference between “putty” and “clay” increments is key to assessing whether a consumer is charging their EV with renewables or not.

Study shows RPS spillover positive to other states

honda-windfarm

A study in the Journal of the Association of Environmental and Resource Economics entitled “External Impacts of Local Energy Policy: The Case of Renewable Portfolio Standards” finds that increasing the renewable portfolio standard (RPS) in one state reduces coal generation in neighboring states through trading of renewable energy credits (RECs). This contrasts with findings on greenhouse gas emission “leakage” under California’s cap and trade program put forth by the authors at the Energy Institute at Haas at the University of California here and here.

These latter set of findings has been used California Public Utilities Commissioners to argue against the use of RECs and implication that community choice aggregators (CCAs) are not moving forward increased renewables generation. This new study appears to land on the side of the CCAs which have argued that even relying on RECs in the short run have a positive effect reducing GHG emissions in the West.

Reverse auctions for storage gaining favor

power_auction_xl_721_420_80_s_c1

Two recent reports highlight the benefits of using “reverse auctions”. In a reverse auction, the buyer specifies a quantity to be purchased, and sellers bid to provide a portion of that quantity.  An article in Utility Dive summarizes some of the experiences with renewable market auctions.  A separate report in the Review of Environmental Economics and Policy goes further to lay out five guidelines:

  1. Encourage a Large Number of Auction Participants
  2. Limit the Amount of Auctioned Capacity
  3. Leverage Policy Frameworks and Market Structures
  4. Earmark a Portion of Auctioned Capacity for Less-mature Technologies
  5. Balance Penalizing Delivery Failures and Fostering Competition

This policy prescription requires well-informed policy makers balancing different factors–not a task that is well suited to a state legislature. How to develop such a coherent policy can done in two ways. The first is to let the a state commission work through a proceeding to set an overall target and structure. But perhaps a more fruitful approach would be to let local utilities, such as California’s community choice aggregators (CCAs) to set up individual auctions, maybe even setting their own storage targets and then experimenting with different approaches.

California has repeatedly made errors by overly relying on centralized market structures that overcommit or mismatch resource acquisition. This arises because a mistake by a single central buyer is multiplied across all load while a mistake by one buyer within a decentralized market is largely isolated to the load of that one buyer. Without perfect foresight and a distinct lack of mechanisms to appropriately share risk between buyers and sellers, we should be designing an electricity market that mitigates risks to consumers rather than trying to achieve a mythological “optimal” result.

Relying on short term changes diminishes the promise of energy storage

1.-a-typical-lithium-ion-battery-system-nps-768x576

I posted this response on EDF’s blog about energy storage:

This post accepts too easily the conventional industry “wisdom” that the only valid price signals come from short term responses and effects. In general, storage and demand response is likely to lead to increased renewables investment even if in the short run GHG emissions increase. This post hints at that possibility, but it doesn’t make this point explicitly. (The only exception might be increased viability of baseloaded coal plants in the East, but even then I think that the lower cost of renewables is displacing retiring coal.)

We have two facts about the electric grid system that undermine the validity of short-term electricity market functionality and pricing. First, regulatory imperatives to guarantee system reliability causes new capacity to be built prior to any evidence of capacity or energy shortages in the ISO balancing markets. Second, fossil fueled generation is no longer the incremental new resource in much of the U.S. electricity grid. While the ISO energy markets still rely on fossil fueled generation as the “marginal” bidder, these markets are in fact just transmission balancing markets and not sources for meeting new incremental loads. Most of that incremental load is now being met by renewables with near zero operational costs. Those resources do not directly set the short-term prices. Combined with first shortcoming, the total short term price is substantially below the true marginal costs of new resources.

Storage policy and pricing should be set using long-term values and emission changes based on expected resource additions, not on tomorrow’s energy imbalance market price.